Term Rewriting Systems

Exercise Sheet 12
Prof. Dr.-Ing. Franz Baader
Winter Semester 2011/2012

Exercise 59
a) Consider the following set of identities:

\[E := \{ f(f(x, y), z) \approx f(x, f(y, z)), \ f(x, x) \approx x, \ f(f(x, y), x) \approx x \} \]

Apply the rules of the improved completion procedure to \(E \). Use a strategy that resembles the basic completion procedure, but simplifies rules as follows: upon adding new rules, simplify old ones by means of \(\text{L-SIMPLIFY-RULE} \) and \(\text{R-SIMPLIFY-RULE} \).

Consider the proof

\[P := \langle f(x, f(y, f(y, x))), \ f(x, f(f(y, y), x)), \ f(x, f(y, x)), \ f(f(x, y), x), \ x \rangle. \]

Construct a rewrite proof \(P' \) in \(R_\omega \) with \(P \succ_c P' \) using the proof of Lemma 7.21.

b) Consider the following set of identities:

\[E := \{ x + (y + z) \approx (x + y) + z, \ f(x) + f(y) \approx f(x + y) \} \]

Apply the completion procedure described above to input \(E \) and the polynomial order induced by

\[P_f(X) = X + 1, \ P_+(X, Y) = XY^2. \]

Exercise 60
Consider the following completion procedure for ground term rewriting systems:

Input: \(G_0 \), a finite set of ground identities over \(\Sigma \), >, a reduction order that is total on the set of ground terms over \(\Sigma \).

Procedure: Apply the rules \(\text{L-SIMPLIFY-RULE} \), \(\text{DELETE} \), and \(\text{ORIENT} \), until no more rule is applicable.

Output: A ground term rewriting system.

Show that this procedure

a) always terminates,

b) is fair,

c) is correct, and

d) never fails.