

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Term Rewriting Systems

Exercise Sheet 13

Prof. Dr.-Ing. Franz Baader Winter Semester 2011/2012

Exercise 61

The semi-decision procedure described in the proof of Thm. 7.22 of the lecture is rather inefficient: For the input $s \approx_E t$, all R_i -normal forms of s and t are computed in the *i*th iteration of the "Repeat"-loop. Show that the following modification of the procedure still yields a semi-decision procedure for the word problem:

- Begin with $s_0 := s$ and $t_0 := t$.
- After the *i*th "Repeat"-loop, compute *one arbitrary* R_i -normal form s_i of s_{i-1} and *one arbitrary* R_i -normal form t_i of t_{i-1} .
- Output "yes" ($s \approx_E t$) iff there exists an *n* such that $s_n = t_n$.

Hint: Show the following: (1) For all $n \ge 0$, it holds that $s \approx_E s_n$ and $t \approx_E t_n$; and (2) Since R_{∞} is terminating, there exists an *n* such that $s_n = s_m$ and $t_n = t_m$ for all $m \ge n$.

Exercise 62

Let $f_1, \ldots, f_k \in K[X_1, \ldots, X_n]$. Prove that $\langle f_1, \ldots, f_k \rangle$ is the smallest ideal that contains f_1, \ldots, f_k .

Exercise 63

Let *J* be an ideal of $K[X_1, \ldots, X_n]$. Show that *J* contains the zero polynomial, and that \equiv_J is a congruence relation on $K[X_1, \ldots, X_n]$.

Exercise 64

Show that the order \succ on M_n defined by $X_1^{k_1} \cdots X_n^{k_n} \succ X_1^{\ell_1} \cdots X_n^{\ell_n}$ iff

- $\sum_{i=1}^{n} k_i > \sum_{i=1}^{n} \ell_i$, or
- $\sum_{i=1}^{n} k_i = \sum_{i=1}^{n} \ell_i$ and $(k_1, \dots, k_n) >_{\text{lex}}^{n} (\ell_1, \dots, \ell_n)$

is an admissible total order.