Chapter 3

Basic Model Theory

Interpretations of ALC can be viewed as graphs (with labeled edges and nodes).

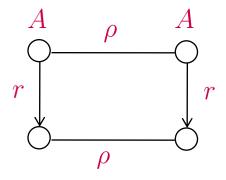
- We introduce the notion of bisimulation between graphs/interpretations
- We show that \mathcal{ALC} -concepts cannot distinguish bisimular nodes
- We use this to show restrictions of the expressive power of \mathcal{ALC}
- We use this to show interesting properties of models for ALC:
 - tree model property
 - closure under disjoint union
- We show the finite model property of ALC.

<u>Definition 3.1</u> (bisimulation)

Let \mathcal{I}_1 and \mathcal{I}_2 be interpretations.

The relation $\rho \subseteq \Delta^{\mathcal{I}_1} \times \Delta^{\mathcal{I}_2}$ is a bisimulation between \mathcal{I}_1 and \mathcal{I}_2 iff

- $d_1 \rho d_2$ implies $d_1 \in A^{\mathcal{I}_1}$ iff $d_2 \in A^{\mathcal{I}_2}$ for all $A \in N_C$
- $d_1 \rho d_2$ and $(d_1, d_1') \in r^{\mathcal{I}_1}$ implies the existence of $d_2' \in \Delta^{\mathcal{I}_2}$ such that $d_1' \rho d_2'$ and $(d_2, d_2') \in r^{\mathcal{I}_2}$ for all $r \in N_R$
- $d_1 \ \rho \ d_2$ and $(d_2, d_2') \in r^{\mathcal{I}_2}$ implies the existence of $d_1' \in \Delta^{\mathcal{I}_1}$ such that $d_1' \ \rho \ d_2'$ and $(d_1, d_1') \in r^{\mathcal{I}_1}$ for all $r \in N_R$



Note:

- $\mathcal{I}_1 = \mathcal{I}_2$ is possible
- the empty relation ∅ is a bisimulation.

Let \mathcal{I}_1 and \mathcal{I}_2 be interpretations and $d_1 \in \Delta^{\mathcal{I}_1}$, $d_2 \in \Delta^{\mathcal{I}_2}$.

$$(\mathcal{I}_1,d_1)\sim (\mathcal{I}_2,d_2)$$
 iff there is a bisimulation ho between \mathcal{I}_1 and \mathcal{I}_2 such that $d_1
ho d_2$

Theorem 3.2 (bisimulation invariance of ALC)

If $(\mathcal{I}_1, d_1) \sim (\mathcal{I}_2, d_2)$, then the following holds for all \mathcal{ALC} -concepts C:

$$d_1 \in C^{\mathcal{I}_1}$$
 iff $d_2 \in C^{\mathcal{I}_2}$

" \mathcal{ALC} -concepts cannot distinguish between d_1 and d_2 "

of ALC

We have introduced extensions of ALC by the concept constructors number restrictions, nominals and the role constructor inverse role.

How can we show that these constructors really extend \mathcal{ALC} , i.e., that they cannot be expressed using the constructors of \mathcal{ALC} .

To this purpose, we show that, using any of these constructors, we can construct concept descriptions

- that cannot be expressed by ALC-concept descriptions,
- i.e, there is no equivalent \mathcal{ALC} -concept description.

of ALC

Proposition 3.3 (\mathcal{ALCN} is more expressive than \mathcal{ALC})

No \mathcal{ALC} -concept description is equivalent to the \mathcal{ALCN} -concept description ($\leq 1r$).

of ALC

Proposition 3.4 (\mathcal{ALCI} is more expressive than \mathcal{ALC})

No \mathcal{ALC} -concept description is equivalent to the \mathcal{ALCI} -concept description $\exists r^{-1}. \top$.

of ALC

Proposition 3.5 (\mathcal{ALCO} is more expressive than \mathcal{ALC})

No \mathcal{ALC} -concept description is equivalent to the \mathcal{ALCO} -concept description $\{a\}$.

Tree model property

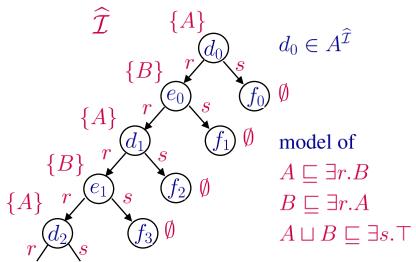
of ALC.

Recall that interpretations can be viewed as graphs:

- nodes are the elements of $\Delta^{\mathcal{I}}$;
- interpretation of role names yields edges;
- interpretation of concept names yields node labels.

 $\begin{array}{c}
\mathcal{I} \\
\{B\} & e \\
\hline
 & f \\
\hline
 & g
\end{array}$ $\begin{array}{c}
\mathcal{I} \\
\mathcal{I} \\$

Starting with a given node, the graph can be unraveled into a tree without "changing membership" in concepts.



<u>Definition 3.6</u> (tree model)

Let \mathcal{T} be a TBox and C a concept description.

The interpretation \mathcal{I} is a tree model of C w.r.t. \mathcal{T} iff \mathcal{I} is a model of \mathcal{T} , and the graph

$$(\Delta^{\mathcal{I}}, \bigcup_{r \in N_R} r^{\mathcal{I}})$$

is a tree whose root belongs to $C^{\mathcal{I}}$.

Theorem 3.7 (tree model property of ALC)

 \mathcal{ALC} has the tree model property,

i.e., if \mathcal{T} is an \mathcal{ALC} -TBox and C an \mathcal{ALC} -concept description such that C is satisfiable w.r.t. \mathcal{T} , then C has a tree model w.r.t. \mathcal{T} .

Proposition 3.8 (no tree model property)

 \mathcal{ALCO} does **not** have the tree model property.

Proof:

The concept $\{a\}$ does not have a tree model w.r.t. $\{\{a\} \sqsubseteq \exists r.\{a\}\}\}$.

Disjoint union

Definition 3.9

Let \mathcal{I}_1 and \mathcal{I}_2 be interpretations over disjoint domains.

Their disjoint union $\mathcal{I}_1 \uplus \mathcal{I}_2$ is defined as follows:

$$\Delta^{\mathcal{I}_1 \uplus \mathcal{I}_2} = \Delta^{\mathcal{I}_1} \cup \Delta^{\mathcal{I}_2}
A^{\mathcal{I}_1 \uplus \mathcal{I}_2} = A^{\mathcal{I}_1} \cup A^{\mathcal{I}_2} \text{ for all } A \in N_C
r^{\mathcal{I}_1 \uplus \mathcal{I}_2} = r^{\mathcal{I}_1} \cup r^{\mathcal{I}_2} \text{ for all } r \in N_R$$

Lemma 3.10

For all \mathcal{ALC} -concept descriptions C, and all $\mathbf{d} \in \Delta^{\mathcal{I}_i}$ with $i \in \{1, 2\}$ we have

$$d \in C^{\mathcal{I}_i}$$
 iff $d \in C^{\mathcal{I}_1 \uplus \mathcal{I}_2}$

Disjoint union

Definition 3.9

Let \mathcal{I}_1 and \mathcal{I}_2 be interpretations over disjoint domains.

Their disjoint union $\mathcal{I}_1 \uplus \mathcal{I}_2$ is defined as follows:

$$\begin{array}{rcl} \Delta^{\mathcal{I}_1 \uplus \mathcal{I}_2} & = & \Delta^{\mathcal{I}_1} \cup \Delta^{\mathcal{I}_2} \\ A^{\mathcal{I}_1 \uplus \mathcal{I}_2} & = & A^{\mathcal{I}_1} \cup A^{\mathcal{I}_2} \text{ for all } A \in N_C \\ r^{\mathcal{I} \uplus \mathcal{J}} & = & r^{\mathcal{I}_1} \cup r^{\mathcal{I}_2} \text{ for all } r \in N_R \end{array}$$

Theorem 3.10b

Let \mathcal{I}_1 and \mathcal{I}_2 be interpretations over disjoint domains, and \mathcal{T} an \mathcal{ALC} -TBox.

If both \mathcal{I}_1 and \mathcal{I}_2 are a model of \mathcal{T} , then $\mathcal{I}_1 \uplus \mathcal{I}_2$ is also a model of \mathcal{T} .

Finite model property

<u>Definition 3.11</u> (finite model)

Let \mathcal{T} be a TBox and C a concept description.

The interpretation $\mathcal I$ is a finite model of C w.r.t. $\mathcal T$ iff

 \mathcal{I} is a model of \mathcal{T} , $C^{\mathcal{I}} \neq \emptyset$, and $\Delta^{\mathcal{I}}$ is finite.

<u>Theorem 3.12</u> (finite model property)

 \mathcal{ALC} has the finite model property,

i.e., if \mathcal{T} is an \mathcal{ALC} -TBox and C an \mathcal{ALC} -concept description such that C is satisfiable w.r.t. \mathcal{T} , then C has a finite model w.r.t. \mathcal{T} .

Proof first requires some definitions.

Size

of ALC-concept descriptions

•
$$C = A$$
: $|A| := 1$ for $A \in N_C$;

•
$$C = C_1 \sqcap C_2$$
 or $C = C_1 \sqcup C_2$: $|C| := 1 + |C_1| + |C_2|$;

•
$$C = \neg D$$
 or $C = \exists r.D$ or $C = \forall r.D$: $|C| := 1 + |D|$.

$$|A \sqcap \exists r.(A \sqcup B)| = 1 + 1 + (1 + (1 + 1 + 1)) = 6$$

Counts the occurrences of concept names, role names, and Boolean operators.

$$|\mathcal{T}| := \sum_{C \sqsubseteq D \in \mathcal{T}} |C| + |D|$$

Subdescriptions

of ALC-concept descriptions

- C = A: Sub $(A) := \{A\}$ for $A \in N_C$;
- $C = C_1 \sqcap C_2$ or $C = C_1 \sqcup C_2$: $\operatorname{Sub}(C) := \{C\} \cup \operatorname{Sub}(C_1) \cup \operatorname{Sub}(C_2);$
- $C = \neg D$ or $C = \exists r.D$ or $C = \forall r.D$: $Sub(C) := \{C\} \cup Sub(D)$.

$$Sub(A \sqcap \exists r.(A \sqcup B)) = \{A \sqcap \exists r.(A \sqcup B), A, \exists r.(A \sqcup B), A \sqcup B, B\}$$

$$\operatorname{Sub}(\mathcal{T}) := \bigcup_{C \sqsubseteq D \in \mathcal{T}} \operatorname{Sub}(C) \cup \operatorname{Sub}(D)$$

- the cardinality of Sub(C) is bounded by |C|;
- the cardinality of Sub(T) is bounded by |T|.

Type

of an element of a model

<u>Definition 3.13</u> (*S*-type)

Let S be a finite set of concept descriptions, and \mathcal{I} an interpretation.

The S-type of $d \in \Delta^{\mathcal{I}}$ is defined as

$$t_S(d) := \{ C \in S \mid d \in C^{\mathcal{I}} \}.$$

Lemma 3.14 (number of S-types)

$$|\{t_S(d) \mid d \in \Delta^{\mathcal{I}}\}| \le 2^{|S|}$$

Proof: obvious

Filtration

of a model

Definition 3.15 (S-filtration)

Let S be a finite set of concept descriptions, and \mathcal{I} an interpretation.

We define an equivalence relation \simeq on $\Delta^{\mathcal{I}}$ as follows:

$$d \simeq e \text{ iff } t_S(d) = t_S(e)$$

The \simeq -equivalence class of $d \in \Delta^{\mathcal{I}}$ is denoted by [d].

The S-filtration of \mathcal{I} is the following interpretation \mathcal{J} :

- $\bullet \ \Delta^{\mathcal{J}} := \{ [d] \mid d \in \Delta^{\mathcal{I}} \}$
- $A^{\mathcal{I}} := \{[d] \mid \exists d' \in [d]. \ d' \in A^{\mathcal{I}}\} \text{ for all } A \in N_C$
- $r^{\mathcal{J}} := \{([d], [e]) \mid \exists d' \in [d], e' \in [e]. (d', e') \in r^{\mathcal{I}}\} \text{ for all } r \in N_R$

Obviously, $|\Delta^{\mathcal{J}}| \leq 2^{|S|}$.

Filtration

important property

We say that the finite set S of concept descriptions is closed iff

$$\bigcup \{ \operatorname{Sub}(C) \mid C \in S \} \subseteq S$$

Lemma 3.16

Let S be a finite set of \mathcal{ALC} -concept descriptions, that is closed, \mathcal{I} an interpretation, and \mathcal{I} the S-filtration of \mathcal{I} . Then we have

$$d \in C^{\mathcal{I}}$$
 iff $[d] \in C^{\mathcal{J}}$

for all $d \in \Delta^{\mathcal{I}}$ and $C \in S$.

The following proposition shows that ALC satisfies a property that is even stronger than the finite model property.

Proposition 3.17 (bounded model property)

Let \mathcal{T} is an \mathcal{ALC} -TBox and C an \mathcal{ALC} -concept description, and $S := \operatorname{Sub}(C) \cup \operatorname{Sub}(\mathcal{T})$.

If C is satisfiable w.r.t. \mathcal{T} , then there is a model $\widehat{\mathcal{I}}$ of \mathcal{T} such that $C^{\widehat{\mathcal{I}}} \neq \emptyset$ and $|\Delta^{\widehat{\mathcal{I}}}| \leq 2^{|S|}$.

Proof: let \mathcal{I} be a model of \mathcal{T} with $C^{\mathcal{I}} \neq \emptyset$, and $\widehat{\mathcal{I}}$ be the S-filtration of \mathcal{I}

We must show:

•
$$|\Delta^{\widehat{I}}| \leq 2^{|S|}$$

Lemma 3.14

•
$$C^{\widehat{\mathcal{I}}} \neq \emptyset$$

follow from Lemma 3.16

The following proposition shows that ALC satisfies a property that is even stronger than the finite model property.

Proposition 3.17 (bounded model property)

Let \mathcal{T} be a TBox, C a concept description, and $S := \operatorname{Sub}(C) \cup \operatorname{Sub}(\mathcal{T})$.

If C is satisfiable w.r.t. \mathcal{T} , then there is a model $\widehat{\mathcal{I}}$ of \mathcal{T} such that $C^{\widehat{\mathcal{I}}} \neq \emptyset$ and $|\Delta^{\widehat{\mathcal{I}}}| \leq 2^{|S|}$.

Corollary 3.17b (decidability)

In ALC, satisfiability of a concept description w.r.t. a TBox is decidable.

No finite model property

<u>Theorem 3.18</u> (no finite model property)

 \mathcal{ALCNI} does not have the finite model property.

Chapter 4

Reasoning with tableaux algorithms

We start with an algorithm for deciding consistency of an ABox without a TBox since this covers most of the inference problems introduced in Chapter 2:

- acyclic TBoxes can be eliminated by expansion
- satisfiability, subsumption, and the instance problem can be reduced to ABox consistency

The tableau-based consistency algorithm tries to generate a finite model for the input ABox A_0 :

- applies tableau rules to extend the ABox one rule per constructor
- checks for obvious contradictions
- an ABox that is complete (no rule applies) and open (contains no obvious contradictions) describes a model

example

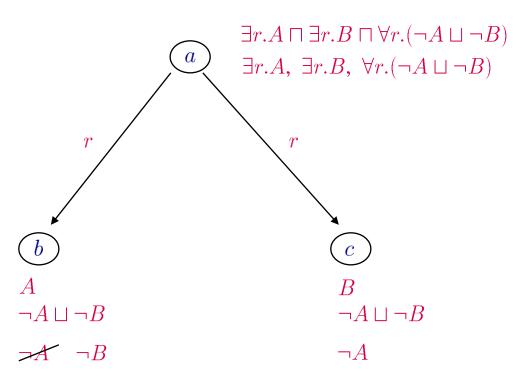
```
GoodStudent \equiv Smart \sqcap Studious
Subsumption question:
      \existsattended.Smart \sqcap \existsattended.Studious \sqsubseteq_{\mathcal{T}}^? \existsattended.GoodStudent
 Reduction to satisfiability: is the following concept unsatisfiable w.r.t. \mathcal{T}?
       \existsattended.Smart \sqcap \existsattended.Studious \sqcap \neg \existsattended.GoodStudent
 Reduction to consistency: is the following ABox inconsistent w.r.t. \mathcal{T}?
  \{ (\exists attended.Smart \sqcap \exists attended.Studious \sqcap \neg \exists attended.GoodStudent)(a) \}
 Expansion: is the following ABox inconsistent?
   \{ (\exists attended.Smart \sqcap \exists attended.Studious \sqcap \neg \exists attended.(Smart \sqcap Studious))(a) \} \}
Negation normal form: is the following ABox inconsistent?
```

 $\{ (\exists attended.Smart \sqcap \exists attended.Studious \sqcap \forall attended.(\neg Smart \sqcup \neg Studious))(a) \} \}$

example continued

Is the following ABox inconsistent?

 $\{ (\exists attended.Smart \sqcap \exists attended.Studious \sqcap \forall attended.(\neg Smart \sqcup \neg Studious))(a) \} \}$



complete and open ABox yields a model for the input ABox

and thus a counterexample to the subsumption relationship

more formal description

Input: An \mathcal{ALC} -ABox \mathcal{A}_0

Output: "yes" if A_0 is consistent

"no" otherwise

Preprocessing:

transform all concept descriptions in A_0 into negation normal form (NNF) by applying the following rules:

$$\neg(C \sqcap D) \rightsquigarrow \neg C \sqcup \neg D$$

$$\neg(C \sqcup D) \rightsquigarrow \neg C \sqcap \neg D$$

$$\neg \neg C \rightsquigarrow C$$

$$\neg(\exists r.C) \rightsquigarrow \forall r.\neg C$$

$$\neg(\forall r.C) \rightsquigarrow \exists r.\neg C$$

The NNF can be computed in polynomial time, and it does not change the semantics of the concept.

negation only in front

of concept names

more formal description

Data structure:

finite set of ABoxes rather than a single ABox: start with $\{A_0\}$

Application of tableau rules:

the rules take one ABox from the set and replace it by finitely many new ABoxes

Termination:

if no more rules apply to any ABox in the set

complete ABox: no rule applies to it

in NNF

Answer:

"consistent" if the set contains an open ABox, i.e., an ABox not containing an obvious contradiction of the form

A(a) and $\neg A(a)$ for some individual name a

"inconsistent" if all ABoxes in the set are closed (i.e., not open)

Tableau rules

one for every constructor (except for negation)

The □-rule

Condition: A contains $(C \sqcap D)(a)$, but not both C(a) and D(a)

Action: $\mathcal{A}' := \mathcal{A} \cup \{C(a), D(a)\}$

The ⊔-rule

Condition: A contains $(C \sqcup D)(a)$, but neither C(a) nor D(a)

Action: $\mathcal{A}' := \mathcal{A} \cup \{C(a)\}\$ and $\mathcal{A}'' := \mathcal{A} \cup \{D(a)\}\$

The ∃-rule

Condition: A contains $(\exists r.C)(a)$, but there is no c with $\{r(a,c),C(c)\}\subseteq \mathcal{A}$

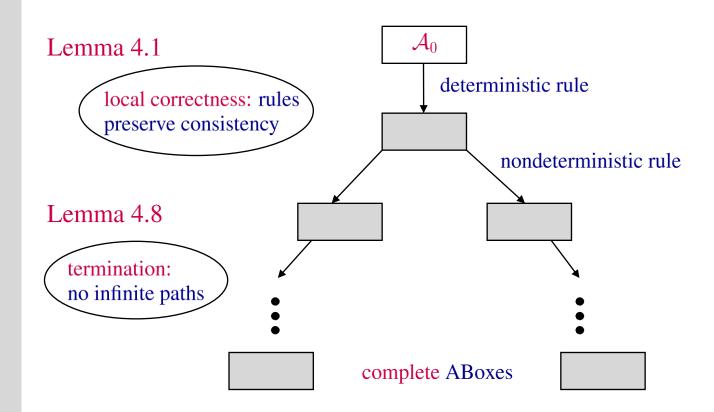
Action: $\mathcal{A}' := \mathcal{A} \cup \{r(a,b), C(b)\}$ where b is a new individual name

The ∀-rule

Condition: A contains $(\forall r.C)(a)$ and r(a,b), but not C(b)

Action: $\mathcal{A}' := \mathcal{A} \cup \{C(b)\}$

is a decision procedure for consistency



soundness: any complete and open ABox has a model

completeness: closed ABoxes do not have a model

Lemma 4.2