Chapter 3 Basic Model Theory

Interpretations of ALC can be viewed as graphs
(with labeled edges and nodes).

e We introduce the notion of bisimulation between graphs/interpretations

e We show that ALC-concepts cannot distinguish bisimular nodes

We use this to show restrictions of the expressive power of ALC

We use this to show interesting properties of models for ALC:
— tree model property

— closure under disjoint union

We show the finite model property of ALC.
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Definition 3.1 (bisimulation)

Let 7, and 7, be interpretations.
The relation p C AT x A2 is a bisimulation between Z; and Z, iff
o di pdy implies d; € AT iff dy € A% forall A € Ng

o di pdsand (dy,d;) € r’* implies the existence of d, € A% such that
" pdyand (do, d)) € r¥> forallr € Ng

o d pdsyand (dy,d)) € r*» implies the existence of d; € A’ such that
" pdyand (dy,dy) € r forallr € Np

Note:

A A

e 7, =1, is possible

e the empty relation () is

a bistimulation.
p
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Let Z, and 7> be interpretations and d, € A?', dy € A2,

(Z1,dy) ~ (To,dy)  iff there is a bisimulation p between Z; and 75
such that d;pd,

Theorem 3.2 (bisimulation invariance of ALC)

If (Zy,d,) ~ (I, ds), then the following holds for all ALC-concepts C":

d; € O iff dy € C*

“ALC-concepts cannot distinguish between d; and d>”

Proof: blackboard

Dresden

© Franz Baader



Expressive power of ACC

We have introduced extensions of ALC by the concept constructors

number restrictions, nominals and the role constructor inverse role.

How can we show that these constructors really extend ALC,

i.e., that they cannot be expressed using the constructors of ALC.

To this purpose, we show that, using any of these constructors,

we can construct concept descriptions
e that cannot be expressed by ALC-concept descriptions,

e i.e, there is no equivalent ALC-concept description.
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Expressive power of ACC

Proposition 3.3 (ALCN is more expressive than ALC)

No ALC-concept description is equivalent to

the ALCN -concept description (< 17).

Proof: blackboard
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Expressive power of ACC

Proposition 3.4 (ALCZ is more expressive than ALC)

No ALC-concept description is equivalent to

the ALCZ-concept description Ir 1. T.

Proof: blackboard
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Expressive power of ACC

Proposition 3.5 (ALCO is more expressive than ALC)

No ALC-concept description is equivalent to

the ALCO-concept description {a}.

Proof: blackboard
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Tree model property of ALC.

Recall that interpretations can be viewed as graphs:

e nodes are the elements of AZ:

model of
e interpretation of role names yields edges; AC 3r.B
. . . BLC 3r.A de A?
e interpretation of concept names yields node labels. =
AUBLC ds.T

I

Starting with a given node, the graph
can be unraveled into a tree without

“changing membership” in concepts.

BEHr.A
AUBLC ds. T
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Definition 3.6 (tree model)

Let 7 be a TBox and C' a concept description.

The interpretation Z is a tree model of C' w.r.t. 7 iff
7 is a model of 7', and the graph

(A%, | )

T‘E."\"YR

is a tree whose root belongs to C”~.

Theorem 3.7 (tree model property of ALC)

ALC has the tree model property,

i.e.,if 7 is an ALC-TBox and C' an ALC-concept description such that
(' is satisfiable w.r.t. 7, then C' has a tree model w.r.t. 7.

Proof: blackboard
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Proposition 3.8 (no tree model property)

ALCO does not have the tree model property.

Proof:

The concept {a} does not have a tree model w.r.t. {{a} C Jr.{a}}.
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Disjoint union

Definition 3.9

Let Z; and Z, be interpretations over disjoint domains.

Their disjoint union Z; & 7, is defined as follows:

AIl w7, — AIl U AI2
AT — ATiy AT forall A € Ng
Lemma 3.10

For all ALC-concept descriptions C', and all d € A% withi € {1,2} we have
d e C iff d e CT"
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Disjoint union

Dresden

Definition 3.9

Let Z; and Z, be interpretations over disjoint domains.

Their disjoint union Z; & 7 is defined as follows:

AIILHIQ — AZ U AIQ
AT — ATiy AL forall A € Ng
p19T = pLyrL forallr € Np

Theorem 3.10b

Let 77 and 7, be interpretations over disjoint domains, and 7 an ALC-TBox.

If both Z; and 7, are a model of 7, then Z; W Z, is also a model of 7T .

Proof: blackboard
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Finite model property

Definition 3.11 (finite model)

Let 7 be a TBox and C' a concept description.

The interpretation Z is a finite model of C' w.r.t. 7 iff
7 is amodel of 7, C% # (), and A7 is finite.

Theorem 3.12 (finite model property)

ALC has the finite model property,

i.e., if 7 is an ALC-TBox and C an ALC-concept description such that
(' is satisfiable w.r.t. 7, then C' has a finite model w.r.t. 7.

Proof first requires some definitions.
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Size of ALC-concept descriptions

e ('=A: |Al:=1 for A € Ng¢;
o C:Cll_lcgorO:Cll_lCQ: ’C‘ :il+’01‘+‘02

e C'=-DorC=3drDorC =Vr.D: |C|:=1+|D|.

2

AN 3r(AuB)|=1+1+(1+(1+1+1) =6

Counts the occurrences of concept names, role names, and Boolean operators.

7| = ) |C|+|D|

CCDeT
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Subdescri ptionS of ALC-concept descriptions

e ('=A: Sub(A) :={A} for A € N¢;
o C'=CiMNCyorC =CLUCy: Sub(C) := {C}USub(C})USub(Ch);

e ('=—DorC =3r.DorC =VYr.D: Sub(C):={C} USub(D).

Sub(AM3r.(AUB)) = {AN3Ir(AUB), A, I(AUB), AUB, B)

Sub(7T) := U Sub(C') U Sub(D)

e the cardinality of Sub(C') is bounded by |C/;

e the cardinality of Sub(7") is bounded by |7|.
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Type of an element of a model

Definition 3.13 (S-type)

Let .S be a finite set of concept descriptions, and Z an interpretation.

The S-type of d € A? is defined as
ts(d) :={C € S|deC*}.

Lemma 3.14 (number of S-types)

{ts(d) | d e AT} < 25

Proof: obvious
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FI|'[I‘a'[IOI’] of a model

Definition 3.15 (S-filtration)

Let .S be a finite set of concept descriptions, and Z an interpretation.

We define an equivalence relation ~ on A as follows:

d~e iff tg(d) =ts(e)

The ~-equivalence class of d € A is denoted by [d].
The S-filtration of Z is the following interpretation 7 :
o AN ={[d]|de A}
o AV :={[d]|3d €[d].d € AT} forall A € N¢
o 7 = {([d],le]) | 3d’ € [d], ¢’ € [e]. (d',¢') € r*} forallr € Ng

Obviously, |A7| < 2051,
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F i I trat i O n important property

We say that the finite set S’ of concept descriptions is closed iff

U{Sub(C) | CeStCSs

LLemma 3.16

Let S be a finite set of .ALC-concept descriptions, that is closed,
7 an interpretation, and [/ the S-filtration of Z. Then we have

deCt iff [decd

foralld € ATand C € S.

Proof: blackboard
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The following proposition shows that ALC satisfies a property
that is even stronger than the finite model property.

Proposition 3.17 (bounded model property)

Let 7 is an ALC-TBox and C' an ALC-concept description, and
S = Sub(C) U Sub(T).

If (' is satisfiable w.r.t. 7, then there is a model 7 of T such that
CT £ () and |Af| < 281,

Proof: let Z be a model of 7 with C? # (), and 7 be the S-filtration of 7

We must show:

o |Af| < 2l81 Lemma 3.14

° Cf%@

follow from Lemma 3.16
e 7 isamodel of T
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The following proposition shows that ALC satisfies a property
that is even stronger than the finite model property.

Proposition 3.17 (bounded model property)

Let 7 be a TBox, C' a concept description, and S := Sub(C') U Sub(7).

If (' is satisfiable w.r.t. 7, then there is a model 7 of T such that
CT £ () and |Af| < 281,

Corollary 3.17b (decidability)

In ALC, satisfiability of a concept description w.r.t. a TBox is decidable.
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‘ No finite model property I

Theorem 3.18 (no finite model property)

ALCNT does not have the finite model property.

Proof: blackboard
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Chapter 4 Reasoning with tableaux algorithms

We start with an algorithm for deciding consistency of an ABox without
a TBox since this covers most of the inference problems introduced in
Chapter 2:

e acyclic TBoxes can be eliminated by expansion

e satisfiability, subsumption, and the instance problem can be reduced
to ABox consistency

The tableau-based consistency algorithm tries to generate a finite model for
the input ABox Ay:

e applies tableau rules to extend the ABox one rule per constructor

e checks for obvious contradictions

e an ABox that is complete (no rule applies) and open (contains no obvi-
ous contradictions) describes a model
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Tableau algorithm example

T GoodStudent = Smart ' Studious

Expansion: 1is the following ABox inconsistent?

{ (Jattended.Smart M Jattended.Studious M —~Jattended. (Smart M Studious))(a) }

Negation normal form: 1is the following ABox inconsistent?
{ (Jattended.Smart M Jattended.Studious N Vattended.(—~Smart LI —Studious))(a) }
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Tableau algorithm

example continued

Is the following ABox inconsistent?

{ (Jattended.Smart M Jattended.Studious M Vattended.(—Smart Ll —~Studious))(a) }

Ir. AN dr.BOVr.(mAU-B)
@ r.A, Ir.B, Vr.(-AU-B)

@

A
—AlU-B
complete and open ABox and thus a counterexample
yields a model for the input ABox to the subsumption relationship
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Tableau algorithm more formal description

Input: An ALC-ABox Ay

Output: ~ “yes” if Ay is consistent
“no” otherwise
negation only in front
of concept names
Preprocessing: /

transform all concept descriptions in A into negation normal form (NNF)
by applying the following rules:

—(C'MD) ~ =CU-D
—~(C'UD) ~ =CMN=D
——C ~ O
—(3r.C) ~ Vr.=C
=(Vr.C) ~ Jr.=C

The NNF can be computed in polynomial time, and it does not change the
semantics of the concept.
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Tableau algorithm more formal description

in NNF
Data structure:
finite set of ABoxes rather than a single ABox: start with { A}
Application of tableau rules:
the rules take one ABox from the set and replace it by finitely many
new ABoxes
Termination: complete ABox:

no rule applies to it

if no more rules apply to any ABox in the set

Answer:

“consistent” if the set contains an open ABox, i.e., an ABox not containing an
obvious contradiction of the form

A(a) and —A(a) for some individual name a

“inconsistent” if all ABoxes in the set are closed (i.e., not open)
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Tableau rules one for every constructor (except for negation)

The M-rule

Condition: A contains (C' 1 D)(a), but not both C'(a) and D(a)
Action:  A':= AU{C(a), D(a)}

The U-rule

Condition: A contains (C' LI D)(a), but neither C'(a) nor D(a)
Action:  A':= AU{C(a)} and A" := AU {D(a)}

The J-rule

Condition: A contains (3r.C")(a), but there is no ¢ with {r(a,c),C(c)} C A
Action: A" = AU {r(a,b),C(b)} where bisanew individual name

The V-rule

Condition: A contains (Vr.C')(a) and r(a, b), but not C'(b)

Action: A= AU{C(b)}
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Tableau algOrithm is a decision procedure for consistency

Lemma 4.1 Ao

deterministic rule

local correctness: rules
preserve consistency

nondeterministic rule

Lemma 4.8

/ N\

termination:
no infinite paths

complete ABoxes

soundness: any complete and open ABox has a model

Lemma 4.2
completeness: closed ABoxes do not have a model
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