

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

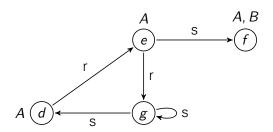
Description Logics

Exercise Sheet 2

Dr.-Ing. Anni-Yasmin Turhan Winter Semester 2012/13

Exercise 5

Extend the mapping τ_x of \mathcal{ALC} -concept descriptions to first-order formulas given in the lecture to the description logic \mathcal{ALCQ} , which augments \mathcal{ALC} with qualified number restrictions.


Exercise 6

Recall that the description logic \mathcal{ALC} is equipped with the concept constructors negation (\neg) , conjunction (\Box) , disjunction (\Box) , existential restriction $(\exists r.C)$, and universal restriction $(\forall r.C)$. Each subset of this set of constructors gives rise to a fragment of \mathcal{ALC} .

Identify all minimal fragments that are equivalent to \mathcal{ALC} in the sense that for every \mathcal{ALC} -concept, there is an equivalent concept in the fragment. (Two concepts are equivalent iff they have the same extension in every interpretation.)

Exercise 7

Consider the (graphical representation of the) interpretation \mathcal{I} with $\Delta^{\mathcal{I}} = \{d, e, f, g\}$:

For each of the following \mathcal{ALCNI} -concepts C, list all elements x of $\Delta^{\mathcal{I}}$ such that $x \in C^{\mathcal{I}}$:

- a) $A \sqcup B$
- b) ∃*s*.¬*A*
- c) ∀s.A
- d) $(\geq 2 s)$
- e) $\exists s. \exists s. \exists s. \exists s. A$
- f) $\forall s^{-1}.\exists s.\exists s.\exists s.A$
- g) $\neg \exists r. (\neg A \sqcap \neg B)$
- h) $\exists s.(A \sqcap \forall s. \neg B) \sqcap \neg \forall r. \exists r.(A \sqcup \neg A)$

Exercise 8

Consider the TBox

$$\mathcal{T} := \{ \neg (A \sqcup B) \sqsubseteq \bot, \quad A \sqsubseteq \neg B \sqcap \exists r.B, \quad D \sqsubseteq \forall r.A, \quad B \sqsubseteq \neg A \sqcap \exists r.A \},$$

the ABox

$$\mathcal{A} := \{ r(a,b), \ r(a,c), \ r(a,d), \ r(d,c), \ (B \sqcap \forall r.D)(a), \ E(b), \ (\neg A)(c), \ (\exists s. \neg D)(d) \},$$

and the knowledge base $\mathcal{K}:=\langle \mathcal{T},\mathcal{A} \rangle$. Check for

- a) the TBox \mathcal{T} ,
- b) the ABox A, and
- c) the knowledge base ${\cal K}$

whether it has a model. If it has one, specify such a model. If it does not have a model, explain why.