

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Description Logics

Exercise Sheet 4

Dr.-Ing. Anni-Yasmin Turhan Winter Semester 2012/13

Exercise 13

Prove the following results.

Let $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$ be a knowledge base, C an \mathcal{ALC} -concept description, and a an individual name.

- a) \mathcal{K} is consistent iff $\tau(\mathcal{K})$ is consistent.
- b) a is an instance of C w.r.t. \mathcal{K} iff $\tau(\mathcal{K}) \models \tau_x(C)(a)$.

Exercise 14

In the lecture, we defined bisimulations for \mathcal{ALC} -concept descriptions s.t. they capture the expressive power of \mathcal{ALC} , i.e. that bisimulation invariance for \mathcal{ALC} -concept descriptions follows.

- a) Extend the notion of bisimulation relation to \mathcal{ALCN} s.t. bisimulation invariance for \mathcal{ALCN} -concept descriptions follows.
- b) Show bisimulation invariance for the bisimulation relation defined in exercise (a).
- c) Prove that \mathcal{ALCQ} is more expressive than \mathcal{ALCN} .

Exercise 15

Let $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$ be a consistent knowledge base. We write $C \sqsubseteq_{\mathcal{K}} D$ if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ for all models \mathcal{I} of \mathcal{K} . Prove that for all \mathcal{ALC} -concepts C and D, we have $C \sqsubseteq_{\mathcal{K}} D$ iff $C \sqsubseteq_{\mathcal{T}} D$.

Hint: Use disjoint unions.

Exercise 16

Show the following claim: If a concept *C* is satisfiable w.r.t. an \mathcal{ALC} -TBox \mathcal{T} , then for all $n \ge 1$ there is a model \mathcal{I}_n of

 \mathcal{T} such that: $|C^{\mathcal{I}_n}| \geq n$.