

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Description Logics

Exercise Sheet 14

Dr.-Ing. Anni-Yasmin Turhan Winter Semester 2012/13

Exercise 43

Let f_1, \ldots, f_m and g_1, \ldots, g_n be (not necessarily distinct) abstract features. A *feature agreement* is a concept of the form $(f_1 \circ \cdots \circ f_m) \downarrow (g_1 \circ \cdots \circ g_n)$ with the semantics:

$$\left(\left(f_1\circ\cdots\circ f_m\right)\downarrow\left(g_1\circ\cdots\circ g_n\right)\right)^{\mathcal{I}}:=\left\{d\in\Delta^{\mathcal{I}}\mid f_m^{\mathcal{I}}(\cdots f_2^{\mathcal{I}}(f_1^{\mathcal{I}}(d))\cdots)=g_n^{\mathcal{I}}(\cdots g_2^{\mathcal{I}}(g_1^{\mathcal{I}}(d))\cdots)\right\}$$

Feature disagreements (\uparrow) are defined analogously. The Description Logic ALCF extends ALC with feature agreements and feature disagreements.

Show that for \mathcal{ALCF} , satisfiability w.r.t. general TBoxes is undecidable.

Exercise 44

Let \mathcal{D} be a concrete domain and $\mathcal{ALC}(\mathcal{D})$ denote the extension of \mathcal{ALC} with the concrete domain \mathcal{D} . Show the following:

- a) If f is an abstract feature, then $\exists f.C$ is equivalent to $\exists f.\top \sqcap \forall f.C$.
- b) If \mathcal{D} contains only unary predicates, every $\mathcal{ALC}(\mathcal{D})$ concept can be 'emulated' by a corresponding \mathcal{ALCN} concept.

Exercise 45

A *role complement* is a role of the form $\neg r$, where *r* is a role name. The semantics of role complements is defined as follows:

$$(\neg r)^{\mathcal{I}} := \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \setminus r^{\mathcal{I}}.$$

The Description Logic ALC^{\neg} extends ALC by role complements, i.e. role complements are allowed to occur in existential restrictions, value restrictions and role assertions.

Show that \mathcal{ALC}^{\neg} does not have the tree-model property.