

Fuzzy Logic

Solutions to Exercise Sheet 3

Dr. Felix Distel Winter Semester 2012

Exercise 12

d) To show
$$BL \vdash ((\varphi \to \psi) \land (\varphi \to \chi)) \to (\varphi \to (\psi \land \chi))$$
 (8)

The idea is to show that both $BL \vdash (\psi \to \chi) \to (8)$ and $BL \vdash (\chi \to \psi) \to (8)$ and then use (A7), the axiom of case distinction.

We only prove $BL \vdash (\psi \rightarrow \chi) \rightarrow (8)$ in detail:

$$BL \vdash (\varphi \rightarrow \psi) \rightarrow \left((\psi \rightarrow \psi \land \chi) \rightarrow (\varphi \rightarrow \psi \land \chi) \right) \qquad \text{instance of (A1)} \\ BL \vdash \underbrace{(\varphi \rightarrow \psi) \& \left((\varphi \rightarrow \psi) \rightarrow (\varphi \rightarrow \chi) \right)}_{(\varphi \rightarrow \psi) \land (\varphi \rightarrow \chi)} \rightarrow (\varphi \rightarrow \psi) \qquad \text{instance of (A2)} \\ BL \vdash (\varphi \rightarrow \psi) \land (\varphi \rightarrow \chi) \rightarrow \left((\psi \rightarrow \psi \land \chi) \rightarrow (\varphi \rightarrow \psi \land \chi) \right) \qquad \text{transitivity, i.e. (A1)} \\ + 2 \times \text{mod. pon.} \\ BL \vdash (\psi \rightarrow \psi \land \chi) \rightarrow \underbrace{((\varphi \rightarrow \psi) \land (\varphi \rightarrow \chi) \rightarrow (\varphi \rightarrow \psi \land \chi))}_{(8)} \qquad \text{Exercise 12 c)} \\ BL \vdash (\psi \rightarrow \chi) \rightarrow (\emptyset) \qquad \text{transitivity, i.e. (A1)} \\ + 2 \times \text{mod. pon.} \\ \end{pmatrix}$$

Using the same arguments one can show that

$$BL \vdash (\chi \rightarrow \psi) \rightarrow (8)$$

We can then use (A7) to prove the claim:

$$BL \vdash \big((\psi \to \chi) \to (8) \big) \to \Big(\big((\chi \to \psi) \to (8) \big) \to (8) \Big) \qquad \text{instance of (A7)}$$

$$BL \vdash \big((\chi \to \psi) \to (8) \big) \to (8) \qquad \text{modus ponens}$$

$$BL \vdash (8) \qquad \text{modus ponens}$$

e) To show
$$\varphi \to \neg \neg \varphi$$
 (10)
$$BL \vdash (\varphi \& (\varphi \to \mathbf{0})) \to \mathbf{0} \qquad \text{instance of (4)}$$

$$BL \vdash \varphi \to \underbrace{((\varphi \to \mathbf{0}) \to \mathbf{0})}_{\neg \neg \varphi} \qquad (A6) + \text{mod. pon}$$