

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Fuzzy Logic

Exercise Sheet 1

Dr. Felix Distel Winter Semester 2012/13

Exercise 1

Show that the following three binary operators are continuous t-norms:

Łukasiewicz t-norm: $x \otimes y = \max\{x + y - 1, 0\},\$

Product t-norm: $x \otimes y = x \cdot y$,

Gödel t-norm: $x \otimes y = \min\{x, y\}$.

Exercise 2

A partial order on the set of all t-norms can be defined naturally as follows. Let \otimes_1 and \otimes_2 denote two t-norms. We write

 $\otimes_1 \leq \otimes_2 :\Leftrightarrow \forall u, v \in [0, 1] : u \otimes_1 v \leq u \otimes_2 v.$

Find two t-norms \otimes_{\min} and \otimes_{\max} such that every t-norm \otimes satisfies $\otimes_{\min} \leq \otimes \leq \otimes_{\max}$.

Exercise 3

Show that for every continuous t-norm and its residuum \Rightarrow , and every $x, y \in [0, 1]$

- a) $x \leq y$ iff $x \Rightarrow y = 1$,
- b) $(1 \Rightarrow x) = x$.

Exercise 4

Show that the following three binary operators are the residua of the t-norms from Exercise 1.

Łukasiewicz: $x \Rightarrow y = \begin{cases} 1 & \text{if } x \leq y \\ 1 - x + y & \text{otherwise} \end{cases}$ **Product:** $x \Rightarrow y = \begin{cases} 1 & \text{if } x \leq y \\ \frac{y}{x} & \text{otherwise} \end{cases}$ **Gödel:** $x \Rightarrow y = \begin{cases} 1 & \text{if } x \leq y \\ y & \text{otherwise} \end{cases}$

1