

Fuzzy Logic

Exercise Sheet 3

Dr. Felix Distel Winter Semester 2012

Exercise 10

Check for which of the three fundamental t-norms (if any) the following formulas are 1-tautologies.

a)
$$\varphi \vee \neg \varphi$$

b)
$$\varphi \rightarrow \varphi \& \varphi$$

c)
$$(\varphi \wedge \psi) \rightarrow (\varphi \& \psi)$$

Exercise 11

Prove that the axioms (A5)–(A8) are 1-tautologies of $PC(\otimes)$ for all continuous t-norms \otimes .

(A5)
$$(\varphi \to (\psi \to \chi)) \to (\varphi \& \psi \to \chi)$$

(A6)
$$(\varphi \& \psi \to \chi) \to (\varphi \to (\psi \to \chi))$$

(A7)
$$((\varphi \to \psi) \to \chi) \to (((\varphi \to \psi) \to \chi) \to \chi)$$

(A8)
$$\mathbf{0} \rightarrow \varphi$$

Exercise 12

Using only modus ponens and the axioms (A1)–(A8) prove the following formulas in BL.

a)
$$\varphi \to \varphi$$

b)
$$((\varphi \& \psi) \& \chi) \to (\varphi \& (\psi \& \chi))$$

(associativity of strong conjunction)

c)
$$(\varphi \to \psi) \to (\varphi \to (\varphi \land \psi))$$

d)
$$((\varphi \to \psi) \land (\varphi \to \chi)) \to (\varphi \to (\psi \land \chi))$$
 (8)

e)
$$\varphi \to \neg \neg \varphi$$
 (10)

Hint: to prove d) you can use c).

Exercise 13

Let $\varphi = x \to y$ and $\psi = x \& x \to y \& y$. Prove or disprove

- a) $\{\varphi\} \vdash \psi$
- b) $BL \vdash \varphi \rightarrow \psi$
- c) BL $\vdash \varphi \& \varphi \rightarrow \psi$