

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Fuzzy Logic

Exercise Sheet 6

Dr. Felix Distel Winter Semester 2012

Exercise 23

Prove the following properties for BL-algebras.

a)
$$y \le y \Rightarrow y^2$$

b) $x \Rightarrow y \le x \otimes y \Rightarrow (y^2 \cup x^2)$

c)
$$x \otimes y \leq x^2 \cup y^2$$

d) $(x \cup y)^2 = x^2 \cup y^2$

Exercise 24

Prove the following result: For every theory T, if $T \not\vdash \varphi$ then there exists a consistent complete supertheory $T' \supseteq T$ such that $T' \not\vdash \varphi$.

Exercise 25

Let **A** be an MV-algebra and T a theory. An **A**-evaluation \mathcal{V} is called an **A**-model of T iff \mathcal{V} evaluates each formula $\varphi \in T$ to 1.

By $[0, 1]_{L}$ we denote the standard MV-algebra on [0, 1] defined by the truth functions of Łukasiewicz logic.

Define

$$T = \{np \to q \mid n \in \mathbb{N}\} \cup \{\neg p \to q\}$$

where $np = \neg(\neg p \& \neg (n-1)p)$. Prove that *q* is true in all $[0, 1]_t$ -models of *T* but this does not hold for any finite subset of *T*.

Exercise 26

Let \otimes be a continuous t-norm and \ominus its precomplement. Prove that the following are equivalent.

- a) \ominus is involutive, i.e. $\ominus \ominus x = x$ for all $x \in [0, 1]$, and
- b) \otimes is equivalent to the Łukasiewicz t-norm.