Chapter 4

Reasoning with Tableaux Algorithms
We start with an algorithm for deciding **consistency of an ABox without a TBox**. This covers most of the inference problems introduced in Chapter 2:

- acyclic TBoxes can be eliminated by **expansion**
- satisfiability, subsumption, equivalence, and instance checking can be reduced to ABox consistency

Idea

The **tableau-based consistency algorithm** tries to generate a **finite model** for the input ABox \mathcal{A}_0 (one rule per constructor)

- **tableau rules** extend the ABox
- **obvious contradictions** show inconsistency
- if an ABox is:
 - complete (no rule applicable) and
 - open (no contradictions found),
 then it describes a model
Example

\[\mathcal{T} : \ \text{Heroine} \equiv \text{Hero} \sqcap \text{Female} \]

Subsumption:
\[\exists \text{helps.} \text{Hero} \sqcap \exists \text{helps.} \text{Female} \sqsubseteq \mathcal{T} \exists \text{helps.} \text{Heroine} \]

Reduction to satisfiability: is the following concept unsatisfiable w.r.t. \(\mathcal{T} \)?
\[\exists \text{helps.} \text{Hero} \sqcap \exists \text{helps.} \text{Female} \sqcap \neg \exists \text{helps.} \text{Heroine} \]

Reduction to consistency: is the following ABox inconsistent w.r.t. \(\mathcal{T} \)?
\[\{ (\exists \text{helps.} \text{Hero} \sqcap \exists \text{helps.} \text{Female} \sqcap \neg \exists \text{helps.} \text{Heroine}) (a) \} \]

Expansion: is the following ABox inconsistent?
\[\{ (\exists \text{helps.} \text{Hero} \sqcap \exists \text{helps.} \text{Female} \sqcap \neg \exists \text{helps.} (\text{Hero} \sqcap \text{Female})) (a) \} \]

NNF: is the following ABox inconsistent?
\[\{ (\exists \text{helps.} \text{Hero} \sqcap \exists \text{helps.} \text{Female} \sqcap \forall \text{helps.} (\neg \text{Hero} \sqcup \neg \text{Female})) (a) \} \]
Expansion of the ABox

Deciding inconsistency of

\{ (\exists \text{helps.Hero} \land \exists \text{helps.Female} \land \forall \text{helps.}(\neg \text{Hero} \sqcup \neg \text{Female})) (a) \}\n
This is a complete, open ABox → model of input ABox

It is consistent, subsumption does not hold
Formal Algorithm

Input An ABox \mathcal{A}_0

Output “yes” if \mathcal{A}_0 is consistent, “no” otherwise

Preprocessing: transform all concept descriptions of \mathcal{A}_0 to negation normal form

$\neg (C \cap D) \leadsto \neg C \cup \neg D$

$\neg (C \cup D) \leadsto \neg C \cap \neg D$

$\neg \neg C \leadsto C$

$\neg (\exists r. C) \leadsto \forall r. \neg C$

$\neg (\forall r. C) \leadsto \exists r. \neg C$

NNF transformation in polynomial time, is semantics invariant
Formal Algorithm (2)

Data Structure:
finite set of ABoxes. Initialized to \(\mathcal{A}_0 \) (in NNF)

Rule applications:
tableau rules replace one ABox from the set by finitely many new ABoxes

Termination:
when no rule can be applied to any ABox in the set
ABox is complete if no rule applies to it

Return:

“yes” if the set contains an open ABox
\(\mathcal{A} \) is open if contains no obvious contradiction of the form \(A(a), \neg A(a) \)
“no” otherwise (i.e., if all ABoxes are closed)
Tableau Rules

There is one rule for each constructor (except negation)

<table>
<thead>
<tr>
<th>Rule</th>
<th>Condition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\cap)-rule</td>
<td>(\mathcal{A}) contains ((C \cap D)(a)) but not both (C(a)) and (D(a))</td>
<td>(\mathcal{A}' := \mathcal{A} \cup {C(a), D(a)})</td>
</tr>
<tr>
<td>(\sqcup)-rule</td>
<td>(\mathcal{A}) contains ((C \sqcup D)(a)) but neither (C(a)) nor (D(a))</td>
<td>(\mathcal{A}' := \mathcal{A} \cup {C(a)}) and (\mathcal{A}'' := \mathcal{A} \cup {D(a)})</td>
</tr>
<tr>
<td>(\exists)-rule</td>
<td>(\mathcal{A}) contains ((\exists r.C)(a)) but there is no (b) with ({r(a, b), C(b)} \subseteq \mathcal{A})</td>
<td>(\mathcal{A}' := \mathcal{A} \cup {r(a, b), C(b)}) where (b) is a new individual name</td>
</tr>
<tr>
<td>(\forall)-rule</td>
<td>(\mathcal{A}) contains ((\forall r.C)(a)) and (r(a, b)) but not (C(b))</td>
<td>(\mathcal{A}' := \mathcal{A} \cup {C(b)})</td>
</tr>
</tbody>
</table>
Tableau Algorithm is a Decision Procedure

Lemma 4.1
rules preserve consistency

Lemma 4.10
termination

Lemma 4.4
soundness complete and open = consistent
completeness closed = inconsistent

A₀

deterministic rule

non-deterministic rule

complete ABoxes

...