

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Description Logics

Exercise Sheet 8

Dr. rer. nat. Rafael Peñaloza/Marcel Lippmann Winter Semester 2013/14

Exercise 31

Let $\mathcal{K} = \langle \mathcal{A}_0, \mathcal{T} \rangle$ be an \mathcal{ALC} -knowledge base, where \mathcal{T} is a general TBox. The *precompletion* of \mathcal{K} is the set of ABoxes M that is produced by the tableau algorithm when starting with the set of ABoxes $\{\mathcal{A}_0\}$ and exhaustively applying all tableau rules plus the GCI-rule except for the modified \exists -rule. Do the following:

a) Show that \mathcal{K} is consistent iff there is an open ABox $\mathcal{A} \in M$ such that for all individual names *a* occurring in \mathcal{A} , the concept $C^a_{\mathcal{A}} := \prod_{C(a) \in \mathcal{A}} C$ is satisfiable w.r.t. \mathcal{T} .

Hint: For the "if" direction, proceed as follows: The correctness of the tableau algorithm for \mathcal{ALC} implies that, if $C^a_{\mathcal{A}}$ is satisfiable, then exhaustively applying all (!) rules to the set of ABoxes {{ $C^a_{\mathcal{A}}(a)$ } yields a set M' that contains an open and complete ABox. Show how to join all these ABoxes to obtain an open and complete tableau for \mathcal{A} and conclude that \mathcal{A}_0 is consistent w.r.t. \mathcal{T} .

b) Use the result from a) to prove that ABox consistency in *ALC* can be decided in deterministic exponential time.

Exercise 32

For each of the following languages of binary trees over the alphabet $\Sigma = \{a, b\}$, define a looping tree automaton that accepts the language.

- a) The set of all trees that contain a branch (starting at the root) in which all nodes are labelled with *a*.
- b) The set of all trees that do not contain nodes n_0 , n_1 , n_2 such that
 - $n_1 = n_0 i$ for some $i \in \{0, 1\}$,
 - $n_2 = n_1 j$ for some $j \in \{0, 1\}$, and
 - $T(n_0) = T(n_1) = T(n_2) = a$.

Exercise 33

Show that there is no looping tree automaton on binary $\{a, b\}$ -trees that accepts the set of all trees that contain a branch with infinitely many nodes labelled with a.