Technische Universität Dresden Institut für Theoretische Informatik Professur für Automatentheorie

Formale Systeme 10. Übungsblatt

Hinweis

Folgende Aufgaben dienen der Selbstkontrolle und werden in der Übung nicht besprochen.

- *) Geben Sie eine nichtdeterministische Turingmaschine \mathcal{A} an, welche die Sprache $L = \{a^i b^j c^k d \mid i = j + k, i, j, k \geq 0\}$ akzeptiert, d.h. $L(\mathcal{A}) = L$.
- **) Zeigen Sie, dass $L=\{w\in\{a,b\}^*\mid w$ enthält mindestens zwei Zeichen $a\}$ Turing-akzeptierbar heißt.

Aufgabe 1

Es sei $\mathcal{P} = \{p_1, ..., p_n\}$ eine Menge aussagenlogischer Variablen. Geben Sie eine kontextfreie Grammatik G an, die alle aussagenlogischen Formeln ϕ mit $Var(\phi) \subseteq \mathcal{P}$ erzeugt.

Aufgabe 2

Zeigen Sie, welche der folgenden Aussagen gelten und welche nicht:

- a) $\{(\neg a \lor b), (\neg b \lor c), (b \land c)\} \models ((a \leftrightarrow b) \lor c)$
- b) $\{(a \rightarrow b), (c \lor a), (a \rightarrow \neg b), \neg c\} \models a$
- c) $\{(a \land \neg b) \lor (\neg a \land b), (\neg c \land b), \neg (\neg a \lor b)\} \models \neg (a \lor b)$

Aufgabe 3

Auf einer Expedition wird ein Ortskundiger gebraucht. Aus einem Dorf, in dem jeder der Bewohner entweder immer die Wahrheit sagt oder immer lügt, gibt es drei Bewerber.

- Der erste sagt: "Einer von den anderen beiden ist ein Lügner."
- Der zweite sagt: "Wenn der erste wahr gesprochen hat, dann ist der dritte der Lügner."
- Der dritte sagt: "Der zweite ist nur ein Lügner, falls der erste die Wahrheit gesagt hat."
- a) Kann man aus diesen Informationen schliessen, wer die Wahrheit sagt und wer lügt?
- b) Welcher Bewerber sollte für eine erfolgreiche Expedition ausgewählt werden?

Aufgabe 4

Für eine Formel ϕ ist die Größe $|\phi|$ definiert durch:

$$|p| := 1$$

$$|\neg \psi_1| := |\psi_1| + 1$$

$$|(\psi_1 \lor \psi_2)| := |\psi_1| + |\psi_2| + 1$$

$$|(\psi_1 \land \psi_2)| := |\psi_1| + |\psi_2| + 1$$

$$|(\psi_1 \to \psi_2)| := |\psi_1| + |\psi_2| + 1$$

$$|(\psi_1 \leftrightarrow \psi_2)| := |\psi_1| + |\psi_2| + 1,$$

wobei ψ_1 und ψ_2 Formeln sind und $p \in \mathcal{P}$ ist.

Zeigen Sie die folgenden Aussagen:

- a) Die Anzahl der Variablen in ϕ ist beschränkt durch $|\phi|$.
- b) Die Anzahl der Unterformeln in ϕ ist beschränkt durch $|\phi|$.