

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Description Logics

Exercise Sheet 2

Dr.-Ing. habil. Anni-Yasmin Turhan/Francesco Kriegel Winter Semester 2014/15

Exercise 5

Extend the mapping τ_x of ALC-concept descriptions to first-order formulas given in the lecture to the description logic ALCQ, which augments ALC with qualified number restrictions.

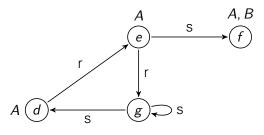
Exercise 6

Recall that the description logic ALC is equipped with the concept constructors negation (\neg) , conjunction (\Box) , disjunction (\sqcup) , existential restriction $(\exists r.C)$, and universal restriction $(\forall r.C)$. Each subset of this set of constructors gives rise to a fragment of ALC.

Identify all minimal fragments that are equivalent to \mathcal{ALC} in the sense that for every \mathcal{ALC} -concept, there is an equivalent concept in the fragment. (Two concepts are equivalent iff they have the same extension in every interpretation.)

Exercise 7

Consider the (graphical representation of the) interpretation \mathcal{I} with $\Delta^{\mathcal{I}} = \{d, e, f, g\}$:



For each of the following ALCNI-concepts *C*, list all elements *x* of Δ^I such that $x \in C^I$:

- a) *A* ⊔ *B*
- b) ∃*s*.¬*A*
- c) ∀*s*.*A*
- d) ($\geq 2 s$)
- e) ∃*s*.∃*s*.∃*s*.∃*s*.A
- f) $\forall s^{-1} . \exists s . \exists s . \exists s . A$

g)
$$\neg \exists r.(\neg A \sqcap \neg B)$$

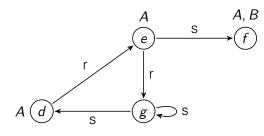
h) $\exists s.(A \sqcap \forall s. \neg B) \sqcap \neg \forall r. \exists r.(A \sqcup \neg A)$

Exercise 8

Consider the ABox

$$\mathcal{A} = \{ A(d), A(e), A(f), B(f), r(d, e), r(e, g), s(e, f), s(g, g), s(g, d) \}$$

with the following graphical representation:



For each of the following ALC-concepts C, list all individuals that are instances of C w.r.t. A. Compare your results to Exercise 7.

- a) $A \sqcup B$
- b) ∃*s*.¬*A*
- c) $\forall s.A$
- d) ∃*s*.∃*s*.∃*s*.∃*s*.A
- e) $\neg \exists r.(\neg A \sqcap \neg B)$
- f) $\exists s.(A \sqcap \forall s. \neg B) \sqcap \neg \forall r. \exists r.(A \sqcup \neg A)$

Exercise 9

Revisit the procedure for expanding TBoxes given in the proof of Proposition 2.6 of the lecture. Prove that

- a) this procedure always terminates, and
- b) that it returns a TBox that is equivalent to its input.

Hint for proving termination: Count, for each concept name *A*, the number of concept names (directly or indirectly) used in the definition of *A*.