

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Description Logics

Exercise Sheet 6

Dr.-Ing. habil. Anni-Yasmin Turhan/Francesco Kriegel Winter Semester 2014/15

Exercise 23

Prove Lemma 4.5 from the lecture.

Let $\mathcal{A} \in \mathcal{M}$ where $\mathcal{A}_0 \stackrel{*}{\rightarrow} \mathcal{M}$.

- a) If $C(a) \in A$, then $C \in Sub(A_0)$.
- b) If $r(a, x) \in A$ and x is a new individual, then $\max_{C(a)\in A} |C| > \max_{C(x)\in A} |C|$.

Hint: Use induction on the number of rule applications.

Exercise 24

Prove Lemma 4.6 from the lecture.

- a) $|\operatorname{Sub}(\mathcal{A}_0)| \leq \widehat{m}$
- b) $|C| \leq \widehat{m}$ for all $C \in Sub(\mathcal{A}_0)$
- c) If \mathcal{A} is an ABox obtained by applying the tableau rules to \mathcal{A}_0 and x is an individual occuring in \mathcal{A} , then $dpt_{\mathcal{A}}(x) \leq \widehat{m}$.

Exercise 25

Prove local correctness for the lazy expansion rule \equiv_2 .

Exercise 26

The tableau algorithm for checking consistency of ALC-ABoxes w.r.t. general TBoxes can be extended to inverse roles by adapting the \exists -rule and \forall -rule as follows:

Let C be an ALCI-concept, and r an ALCI-role, i.e. r denotes a role or an inverse role name, and $(r^{-1})^{-1} = r$ holds.

∃-rule: Condition: A contains $(\exists r.C)(a)$, *a* is not blocked, but there is no *b* with either $\{r(a, b), C(b)\} \subseteq A$ or $\{r^{-1}(b, a), C(b)\} \subseteq A$

Action: $\mathcal{A}' := \mathcal{A} \cup \{r(a, b), C(b)\}$ for a new individual *b* not occuring in \mathcal{A}

 \forall -rule: Condition: $(\forall r.C)(a) \in \mathcal{A}$ and $r(a, b) \in \mathcal{A}$ or $r^{-1}(b, a) \in \mathcal{A}$, but $C(b) \notin \mathcal{A}$

Action: $\mathcal{A}' := \mathcal{A} \cup \{C(b)\}$

- a) Does it suffice to use subset blocking to obtain a decision procedure?
- b) Is the extended tableau algorithm for \mathcal{ALCI} sound and complete?

Exercise 27

Compare the tableau algorithm (with eager expansion) to the tableau algorithm extended with the \equiv_1 - and \equiv_2 -rules (lazy expansion) by applying both methods to check whether *A* is satisfiable w.r.t. \mathcal{T} , where

$$\mathcal{T} := \{ A \equiv \neg B \sqcap B, \ B \equiv \exists r. \exists s. (C \sqcap D) \}.$$

- a) What is the maximal number of complete ABoxes obtained in the set of ABoxes by eager expansion? What is the minimal number for lazy expansion?
- b) What is the maximal number of rule applications by eager expansion? What is the minimal number for lazy expansion?
- c) What is the maximal number of assertions in a complete ABox obtained by eager expansion? What is the minimal number for lazy expansion?
- d) Give $\kappa(\mathcal{M})$ for all sets \mathcal{M} of ABoxes considered in the tableau algorithm with eager expansion.
- e) Give $\kappa_{\mathcal{T}}(\mathcal{M})$ for all sets \mathcal{M} of ABoxes considered in the tableau algorithm with lazy expansion.