

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Description Logics

Exercise Sheet 7

Dr.-Ing. habil. Anni-Yasmin Turhan/Francesco Kriegel Winter Semester 2014/15

Exercise 28

We consider another form of blocking, where an individual can be blocked by an individual that is not necessarily an ancestor: *anywhere blocking*. Instead of the depth of an individual and the ancestor relation, it uses the age of an individual and the relation <.

The *age* of an individual x, denoted by age(x), is defined as 0 for old individuals and n for a new individual x, that was generated by the *n*th application of the \exists -rule.

Let \mathcal{A} be an ABox obtained by applying the tableau rules and the \sqsubseteq -rule to an initial ABox \mathcal{A}_0 . A new individual x is *anywhere blocked* by an individual *a* in \mathcal{A} iff

- $\{C \mid C(x) \in A\} \subseteq \{D \mid D(a) \in A\}$, and
- age(a) < age(x).

Prove that the tableau algorithm with anywhere blocking is a decision procedure for consistency of ALC-knowledge bases with general TBoxes.

Hint: For what subset of the complete tableau do we need to construct a model?

Exercise 29

Let $\mathcal{K} = \langle \mathcal{A}_0, \mathcal{T} \rangle$ be an \mathcal{ALC} -knowledge base, where \mathcal{T} is a general TBox. The *precompletion* of \mathcal{K} is the set of ABoxes \mathcal{M} that is produced by the tableau algorithm when starting with the set of ABoxes $\{\mathcal{A}_0\}$ and exhaustively applying all tableau rules except the modified \exists -rule.

a) Show that \mathcal{K} is consistent iff there is an open ABox $\mathcal{A} \in \mathcal{M}$ such that for all individual names *a* occurring in \mathcal{A} , the concept $C^a_{\mathcal{A}} := \prod_{C(a) \in \mathcal{A}} C$ is satisfiable w.r.t. \mathcal{T} .

Hint: For the "if" direction, proceed as follows: The correctness of the tableau algorithm for \mathcal{ALC} implies that, if $C^a_{\mathcal{A}}$ is satisfiable, then exhaustively applying all (!) rules to the set of ABoxes $\{\{C^a_{\mathcal{A}}(a)\}\}$ yields a set \mathcal{M}' that contains an open and complete ABox. Show how to join all these ABoxes to obtain an open and complete tableau for \mathcal{A} and conclude that \mathcal{A}_0 is consistent w.r.t. \mathcal{T} .

b) Use the result from a) to prove that ABox consistency in ALC can be decided in deterministic exponential time.

Exercise 30

Show that the size of $|C|_{\mathcal{T}}$ of a concept *C* w.r.t. an acyclic TBox \mathcal{T} is well-defined.