

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

# **Description Logics**

#### **Exercise Sheet 12**

Dr.-Ing. habil. Anni-Yasmin Turhan/Francesco Kriegel Winter Semester 2014/15

## **Exercise 45**

Determine whether Player 2 has a winning strategy in the EXPTIME game  $G = (\phi, \Gamma_1, \Gamma_2, t_0)$  with

- $\phi = (p_1 \land p_2 \land p_3 \land \neg q) \lor (\neg p_1 \land \neg p_2 \land \neg p_3 \land q),$
- $\Gamma_1 = \{p_1, p_2, p_3\},\$
- $\Gamma_2 = \{q\},$
- $t_0(p_1) = t_0(p_2) = t_0(p_3) = t_0(q) = 0.$

### Exercise 46

Use a tableau algorithm to decide whether the following  $\mathcal{ALC}$ -knowledge base is consistent:

$$\mathcal{T} := \{ A \sqcap \forall r. \neg A \sqsubseteq \bot \}$$
$$\mathcal{A} := \{ (\forall r. \neg A)(a), \ (\exists r. A)(b), \ r(a, b) \}$$

## Exercise 47

For each of the following  $\mathcal{ALC}$ -concept descriptions C and  $\mathcal{ALC}$ -TBoxes  $\mathcal{T}$  decide whether C is satisfiable w.r.t.  $\mathcal{T}$  by constructing the looping tree automaton  $\mathcal{A}_{C,\mathcal{T}}$  and checking its accepted language  $L(\mathcal{A}_{C,\mathcal{T}})$  for emptiness.

a) 
$$C := A$$
  
 $\mathcal{T} := \{A \sqsubseteq \neg A\}$   
b)  $C := A$   
 $\mathcal{T} := \emptyset$   
c)  $C := A \sqcap \exists r.A$   
 $\mathcal{T} := \{A \sqsubseteq \forall r. \neg A\}$ 

#### Exercise 48

Show that transitivity of a role cannot be expressed in  $\mathcal{ALC}$ .

**Hint:** Show that the FOL-formula  $\forall x.\forall y.\forall z.(R(x, y) \land R(y, z)) \rightarrow R(x, z)$  is not equivalent to a formula in the two-variable-fragment of FOL.