

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Description Logics

Exercise Sheet 13

Dr.-Ing. habil. Anni-Yasmin Turhan/Francesco Kriegel Winter Semester 2014/15

Exercise 49

Consider the concrete domain $\mathcal{N} := (\Delta^{\mathcal{N}}, \Phi^{\mathcal{N}})$ defined in section 7.2 of the lecture. Show that \mathcal{N} is admissible.

$$\begin{split} &\Delta^{\mathcal{N}} := \mathbb{N} \\ &\Phi^{\mathcal{N}} := \{=, =_0, +1, \top_{\mathcal{N}}\} \cup \{\text{negations of } =, =_0, +1, \top_{\mathcal{N}}\} \end{split}$$

Exercise 50

Prove that for a given TBox \mathcal{T} and a consequence $A \sqsubseteq B$ there can be exponentially many MinAs for $A \sqsubseteq B$.

Hint: You do not need any concept constructors except conjunction.

Exercise 51

Let \mathcal{L}_1 and \mathcal{L}_2 be two DL-languages. We define the \mathcal{L}_2 -lcs as follows. Let C_1, \ldots, C_n be \mathcal{L}_1 -concept descriptions. An \mathcal{L}_2 -concept description C is called the \mathcal{L}_2 -lcs of C_1, \ldots, C_n iff

- (1) $C_i \sqsubseteq C$ holds for all $i, 1 \le i \le n$, and
- (2) for all \mathcal{L}_2 -concept descriptions D it holds that $C_i \sqsubseteq D$ for all $i, 1 \le i \le n$ imply $C \sqsubseteq D$.

This generalizes the standard notion of least common subsumers since it allows different logics for C_1, \ldots, C_n and their lcs.

Consider the following \mathcal{FLE} -concept descriptions

$$C_1 = \exists r. C \sqcap \exists r. D \sqcap \forall r. (A \sqcap B),$$

$$C_2 = \exists r. B \sqcap \exists r. D \sqcap \forall r. (A \sqcap D).$$

Find

```
a) the \mathcal{EL}-lcs,
```

- b) the \mathcal{FLE} -lcs¹, and
- c) the $\mathcal{ALC}\text{-lcs}$

of C_1 and C_2 .

Hint: It is not necessary to provide an algorithm that can compute the lcs in the general case.

 $^{{}^{1}\}mathcal{FLE}$ provides conjunction, existential restrictions and value restrictions.

Exercise 52

Let $\mathcal{K} = (\mathcal{A}, \mathcal{T})$ be a knowledge base and i_1, \dots, i_n individuals occuring in \mathcal{A} .

A concept description C is the most specific concept of $i_1, ..., i_n$ w.r.t. \mathcal{K} , iff

- (1) all individuals i_1, \ldots, i_n are instances of C w.r.t. \mathcal{K} , and
- (2) for all concept descriptions *D* it holds that, whenever all individuals $i_1, ..., i_n$ are instances of *D* w.r.t. \mathcal{K} , then $D \sqsubseteq_{\mathcal{T}} C$ holds.

Prove, that the most specific concept of i_1, \ldots, i_n w.r.t. \mathcal{K} is equivalent to the least common subsumer of the most specific concepts of i_1, \ldots, i_n w.r.t. \mathcal{K} .