

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Description Logics

Exercise Sheet 3

PD Dr.-Ing. habil. Anni-Yasmin Turhan/Dipl.-Math. Francesco Kriegel Winter Semester 2015/16

Exercise 10

Consider the TBox

$$\mathcal{T} := \{ \neg (A \sqcup B) \sqsubseteq \bot, \quad A \sqsubseteq \neg B \sqcap \exists r.B, \quad D \sqsubseteq \forall r.A, \quad B \sqsubseteq \neg A \sqcap \exists r.A \},$$

the ABox

 $\mathcal{A} := \{ r(a, b), r(a, c), r(a, d), r(d, c), (B \sqcap \forall r.D)(a), E(b), (\neg A)(c), (\exists s.\neg D)(d) \},$ and the knowledge base $\mathcal{K} := \langle \mathcal{T}, \mathcal{A} \rangle$. Check for

- a) the TBox ${\cal T}$,
- b) the ABox $\ensuremath{\mathcal{A}}$, and
- c) the knowledge base \mathcal{K} ,

whether it has a model. If it has one, specify such a model. If it does not have a model, explain why.

Exercise 11

Prove that existential restrictions are monotonic, i.e. show that

 $C \sqsubseteq_{\mathcal{T}} D \implies \exists r. C \sqsubseteq_{\mathcal{T}} \exists r. D.$

Exercise 12

Prove the following result: Let $\mathcal{K} := \langle \mathcal{T}, \mathcal{A} \rangle$ be a knowledge base. If *a* is an instance of *C* w.r.t. \mathcal{K} and $C \sqsubseteq_{\mathcal{T}} D$, then *a* is an instance of *D* w.r.t. \mathcal{K} .

Exercise 13

Prove the following results. Let $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$ be a knowledge base, C an \mathcal{ALC} -concept, and a an individual name.

- a) \mathcal{K} is consistent iff $\tau(\mathcal{K})$ is consistent.
- b) a is an instance of C w.r.t. \mathcal{K} iff $\tau(\mathcal{K}) \models \tau_{x}(C)(a)$.

Exercise 14

Let $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$ be a consistent knowledge base. We write $C \sqsubseteq_{\mathcal{K}} D$ if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ for every model \mathcal{I} of \mathcal{K} . Prove that for all \mathcal{ALC} -concepts C and D, we have $C \sqsubseteq_{\mathcal{K}} D$ iff $C \sqsubseteq_{\mathcal{T}} D$.

Hint: Use disjoint unions.