Description Logics

Exercise Sheet 4

PD Dr.-Ing. habil. Anni-Yasmin Turhan / Dipl.-Math. Francesco Kriegel
Winter Semester 2015/16

Exercise 15

In the lecture, we defined bisimulations for \(\mathcal{ALC} \)-concepts s.t. they capture the expressive power of \(\mathcal{ALC} \), i.e. that bisimulation invariance for \(\mathcal{ALC} \)-concepts follows.

\begin{itemize}
 \item[a)] Extend the notion of a bisimulation relation to \(\mathcal{ALCN} \) s.t. bisimulation invariance for \(\mathcal{ALCN} \)-concepts follows.
 \item[b)] Show bisimulation invariance for the bisimulation relation defined in exercise (a).
 \item[c)] Prove that \(\mathcal{ALCQ} \) is more expressive than \(\mathcal{ALCN} \).
\end{itemize}

Exercise 16

Prove or refute the following claim:

If an \(\mathcal{ALC} \)-concept \(C \) is satisfiable w.r.t. an \(\mathcal{ALC} \)-TBox \(T \), then for all \(n \geq 1 \) there is a model \(I_n \) of \(T \) such that: \(|C^{I_n}| \geq n \).

Exercise 17

Prove that bisimulations are closed under

\begin{itemize}
 \item[a)] composition \(\circ \), and
 \item[b)] union \(\cup \).
\end{itemize}

Exercise 18

Prove or refute the following claim:

Given an \(\mathcal{ALC} \)-concept \(C \) and an \(\mathcal{ALC} \)-TBox \(T \). If \(I \) is an interpretation and \(J \) its filtration w.r.t. \(\text{sub}(C) \cup \text{sub}(T) \), then the relation \(\rho = \{ (d, [d]) \mid d \in \Delta^I \} \) is a bisimulation.