

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Description Logics

Exercise Sheet 7

PD Dr.-Ing. habil. Anni-Yasmin Turhan/Dipl.-Math. Francesco Kriegel Winter Semester 2015/16

Exercise 27

The tableau algorithm for checking consistency of ALC-ABoxes w.r.t. general TBoxes can be extended to inverse roles by adapting the \exists -rule and \forall -rule as follows:

Let *C* be an ALCI-concept, and *r* an ALCI-role, i.e. *r* denotes a role or an inverse role name, and $(r^{-1})^{-1} = r$ holds.

∃-rule: Condition: A contains ($\exists r.C$)(a), a is not blocked, but there is no b with either {r(a, b), C(b)} ⊆ A or { $r^{-1}(b, a), C(b)$ } ⊆ A

Action: $A' := A \cup \{r(a, b), C(b)\}$ for a new individual *b* not occuring in A

 \forall -rule: Condition: $(\forall r.C)(a) \in \mathcal{A}$ and $r(a, b) \in \mathcal{A}$ or $r^{-1}(b, a) \in \mathcal{A}$, but $C(b) \notin \mathcal{A}$

Action: $\mathcal{A}' := \mathcal{A} \cup \{\mathcal{C}(b)\}$

- a) Does it suffice to use subset blocking to obtain a decision procedure?
- b) Is the extended tableau algorithm for \mathcal{ALCI} sound and complete?

Exercise 28

We consider another form of blocking, where an individual can be blocked by an individual that is not necessarily an ancestor: *anywhere blocking*. Instead of the depth of an individual and the ancestor relation, it uses the age of an individual and the relation <.

The *age* of an individual x, denoted by age(x), is defined as 0 for old individuals and n for a new individual x, that was generated by the nth application of the \exists -rule.

Let \mathcal{A} be an ABox obtained by applying the tableau rules and the \sqsubseteq -rule to an initial ABox \mathcal{A}_0 . A new individual x is *anywhere blocked* by an individual *a* in \mathcal{A} iff

- $\{C \mid C(x) \in \mathcal{A}\} \subseteq \{D \mid D(a) \in \mathcal{A}\}, \text{ and }$
- age(a) < age(x).

Prove that the tableau algorithm with anywhere blocking is a decision procedure for consistency of \mathcal{ALC} -knowledge bases with general TBoxes.

Hint: For what subset of the complete tableau do we need to construct a model?

Exercise 29

Let $\mathcal{K} = \langle \mathcal{A}_0, \mathcal{T} \rangle$ be an \mathcal{ALC} -knowledge base, where \mathcal{T} is a general TBox. The *precompletion* of \mathcal{K} is the set of ABoxes \mathcal{M} that is produced by the tableau algorithm when starting with the set of ABoxes $\{\mathcal{A}_0\}$ and exhaustively applying all tableau rules except the modified \exists -rule.

a) Show that \mathcal{K} is consistent iff there is an open ABox $\mathcal{A} \in \mathcal{M}$ such that for all individual names *a* occurring in \mathcal{A} , the concept $C^a_{\mathcal{A}} := \prod_{C(a) \in \mathcal{A}} C$ is satisfiable w.r.t. \mathcal{T} .

Hint: For the "if" direction, proceed as follows: The correctness of the tableau algorithm for \mathcal{ALC} implies that, if $C^a_{\mathcal{A}}$ is satisfiable, then exhaustively applying all (!) rules to the set of ABoxes $\{\{C^a_{\mathcal{A}}(a)\}\}$ yields a set \mathcal{M}' that contains an open and complete ABox. Show how to join all these ABoxes to obtain an open and complete tableau for \mathcal{A} and conclude that \mathcal{A}_0 is consistent w.r.t. \mathcal{T} .

b) Use the result from a) to prove that ABox consistency in *ALC* can be decided in deterministic exponential time.