

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Description Logics

Exercise Sheet 10

PD Dr.-Ing. habil. Anni-Yasmin Turhan/Dipl.-Math. Francesco Kriegel Winter Semester 2015/16

Exercise 37

Let \mathcal{T} be a general \mathcal{EL} -TBox and $\hat{\mathcal{T}}$ the TBox obtained from exhaustive application of the normalisation rules NF1–NF5 to \mathcal{T} .

Finish the proof of Lemma 5.18 by showing the following:

- a) $\hat{\mathcal{T}}$ can be obtained from \mathcal{T} in polynomial time.
- b) $\widehat{\mathcal{T}}$ is in normal form.
- c) For all concept names A, B occurring in \mathcal{T} , we have $A \sqsubseteq_{\mathcal{T}} B$ iff $A \sqsubseteq_{\widehat{\mathcal{T}}} B$.

Exercise 38

Consider the \mathcal{EL} -TBox \mathcal{T} consisting of the following axioms:

$$A \sqsubseteq B \sqcap \exists r.C$$
$$B \sqcap \exists r.B \sqsubseteq C \sqcap D$$
$$C \sqsubseteq \exists r.A \sqcap B$$
$$\exists r.\exists r.B \sqcap D \sqsubseteq \exists r.(A \sqcap B)$$

Check whether the following subsumption relations hold w.r.t. \mathcal{T} :

a) *A* ⊑ *B*

- b) $A \sqsubseteq \exists r. \exists r. A$
- c) $B \sqcap \exists r.A \sqsubseteq \exists r.C$

Exercise 39

A *role complement* is a role of the form $\neg r$, where *r* is a role name. The semantics of role complements is defined as follows:

$$(\neg r)^{\mathcal{I}} := \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \setminus r^{\mathcal{I}}.$$

The description logic \mathcal{ALC}^{\neg} extends \mathcal{ALC} by role complements, i.e. role complements are allowed to occur in existential restrictions, value restrictions and role assertions.

Show that \mathcal{ALC}^\neg does not have the tree-model property.

Exercise 40

Use a tableau algorithm to decide whether the following \mathcal{ALC} -knowledge base is consistent:

$$\mathcal{T} := \{ A \sqcap \forall r. \neg A \sqsubseteq \bot \}$$
$$\mathcal{A} := \{ (\forall r. \neg A)(a), \ (\exists r. A)(b), \ r(a, b) \}$$

Exercise 41

For each of the following \mathcal{ALC} -concept descriptions C and \mathcal{ALC} -TBoxes \mathcal{T} decide whether C is satisfiable w.r.t. \mathcal{T} by constructing the looping tree automaton $\mathcal{A}_{C,\mathcal{T}}$ and checking its accepted language $L(\mathcal{A}_{C,\mathcal{T}})$ for emptiness.

a)
$$C := A$$

 $\mathcal{T} := \{A \sqsubseteq \neg A\}$
b) $C := A$
 $\mathcal{T} := \emptyset$
c) $C := A \sqcap \exists r.A$
 $\mathcal{T} := \{A \sqsubseteq \forall r. \neg A\}$