

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Description Logics

Exercise Sheet 12

PD Dr.-Ing. habil. Anni-Yasmin Turhan/Dipl.-Math. Francesco Kriegel Winter Semester 2015/16

Exercise 44

For each of the following EXPTIME games, determine whether Player 2 has a winning strategy:

- a) $G_1 = (p \to q, \{p\}, \{q\}, \{p \mapsto 1, q \mapsto 0\}),$
- b) $G_2 = (p \rightarrow q, \{q\}, \{p\}, \{p \mapsto 1, q \mapsto 0\}),$
- c) $G_3 = (p_1 \land p_2 \leftrightarrow q, \{p_1, p_2\}, \{q\}, \{p_1 \mapsto 0, p_2 \mapsto 0, q \mapsto 1\}),$
- d) $G_4 = (\phi, \Gamma_1, \Gamma_2, t_0)$ with
 - $\phi = (p_1 \land p_2 \land p_3 \land \neg q) \lor (\neg p_1 \land \neg p_2 \land \neg p_3 \land q),$
 - $\Gamma_1 = \{p_1, p_2, p_3\},\$
 - $\Gamma_2 = \{q\},\$
 - $t_0(p_1) = t_0(p_2) = t_0(p_3) = t_0(q) = 0.$

Exercise 45

The description logic S extends ALC with *transitivity axioms* trans(r) for roles $r \in N_R$. The semantics are defined as follows: $\mathcal{I} \models \text{trans}(r)$ if, and only if, $r^{\mathcal{I}}$ is transitive. Furthermore, an S-knowledge base $(\mathcal{T}, \mathcal{A}, \mathcal{R})$ consists of an ALC-knowledge base $(\mathcal{T}, \mathcal{A})$ and a *RBox* \mathcal{R} of transitivity axioms. Prove the following claims:

a) trans(r) cannot be expressed in ALC, i.e., S is more expressive than ALC.

Hint: Show that the FOL-formula $\forall x.\forall y.\forall z.(R(x, y) \land R(y, z)) \rightarrow R(x, z)$ is not equivalent to a formula in the two-variable-fragment of FOL.

- b) For an arbitrary TBox \mathcal{T} , the concept description $C_{\mathcal{T}}$ is defined as $\prod_{C \subseteq D \in \mathcal{T}} \neg C \sqcup D$. Then \mathcal{T} and $\{\top \subseteq C_{\mathcal{T}}\}$ have the same models.
- c) Let $\mathcal{K} = (\mathcal{T}, \mathcal{A}, \mathcal{R})$ be a \mathcal{S} -knowledge base such that w.l.o.g. \mathcal{T} consists of a single GCI $\top \sqsubseteq C_{\mathcal{T}}$, and $C_{\mathcal{T}}$ is in NNF. Define the \mathcal{ALC} -knowledge base $\mathcal{K}^+ := (\mathcal{T}^+, \mathcal{A})$ where $\mathcal{T}^+ := \mathcal{T} \cup \{ \forall r. \mathcal{C} \sqsubseteq \forall r. \forall r. \mathcal{C} \mid \mathsf{trans}(r) \in \mathcal{R}, \forall r. \mathcal{C} \in \mathsf{Sub}(C_{\mathcal{T}}) \}.$

Then \mathcal{K} is consistent if, and only if, \mathcal{K}^+ is consistent.

Consequently, the tableaux algorithm for \mathcal{ALC} can also be utilized for \mathcal{S} .

d) The problem of deciding consistency of a S-knowledge base (with a general TBox) is EXPTIME-complete.

Exercise 46

Let f_1, \ldots, f_m and g_1, \ldots, g_n be (not necessarily distinct) abstract features. A *feature agreement* is a concept of the form $(f_1 \circ \cdots \circ f_m) \downarrow (g_1 \circ \cdots \circ g_n)$ with the semantics:

$$((f_1 \circ \cdots \circ f_m) \downarrow (g_1 \circ \cdots \circ g_n))^{\mathcal{I}} := \{ d \in \Delta^{\mathcal{I}} \mid f_m^{\mathcal{I}}(\cdots f_2^{\mathcal{I}}(f_1^{\mathcal{I}}(d)) \cdots) = g_n^{\mathcal{I}}(\cdots g_2^{\mathcal{I}}(g_1^{\mathcal{I}}(d)) \cdots) \}$$

Feature disagreements (\uparrow) are defined analogously. The description logic ALCF extends ALC with feature agreements and feature disagreements.

Show that satisfiability w.r.t. general TBoxes is undecidable for \mathcal{ALCF} .

Exercise 47

A (normalized) Horn- \mathcal{FL}_0 -TBox may contain GCIs of the following forms (where $A, B, C \in N_C$, and $r \in N_R$):

 $A \sqsubseteq \bot$, $\top \sqsubseteq A$, $A \sqsubseteq B$, $A \sqcap B \sqsubseteq C$, $A \sqsubseteq \forall r.B$.

Furthermore, (normalized) Horn- \mathcal{FL}_0 -ABoxes consist of axioms A(a) or r(a, b) (where $A \in N_C$, $r \in N_R$, and $a, b \in N_I$). Prove that checking consistency of (normalized) Horn- \mathcal{FL}_0 -knowledge bases can be done in polynomial time.

Hint: Satisfiability of propositional Horn-formulae is in P.