

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Description Logics

Exercise Sheet 13

PD Dr.-Ing. habil. Anni-Yasmin Turhan/Dipl.-Math. Francesco Kriegel Winter Semester 2015/16

Exercise 48

Consider the concrete domain $\mathcal{N} := (\Delta^{\mathcal{N}}, \Phi^{\mathcal{N}})$ defined in Section 7.2 of the lecture. Show that \mathcal{N} is admissible.

$$\begin{array}{l} \Delta^{\mathcal{N}} := \mathbb{N} \\ \Phi^{\mathcal{N}} := \{=, =_0, +1, \top_{\mathcal{N}}\} \cup \{\text{negations of } =, =_0, +1, \top_{\mathcal{N}}\} \end{array}$$

Exercise 49

Let \mathcal{D} be a concrete domain and $\mathcal{ALC}(\mathcal{D})$ denote the extension of \mathcal{ALC} with the concrete domain \mathcal{D} . Show the following statements:

- a) If f is an abstract feature, then $\exists f.C$ is equivalent to $\exists f.\top \sqcap \forall f.C$.
- b) If \mathcal{D} contains only unary predicates, every $\mathcal{ALC}(\mathcal{D})$ -concept can be 'emulated' by a corresponding \mathcal{ALCN} -concept.

Exercise 50

Consider the concrete domain \mathcal{B} where $\Delta^{\mathcal{B}} := \{0, 1\}$, and the predicate set is given as

- (i) $\Phi^{\mathcal{B}} := \{ \perp_{\mathcal{B}}, \top_{\mathcal{B}}, =_0, =_1 \},\$
- (ii) $\Phi^{\mathcal{B}} := \{\phi(x_1, \dots, x_n) \mid n \in \mathbb{N} \text{ and } \phi \text{ is a propositional formula over the variables } x_1, \dots, x_n\}$ such that

$$(\phi(x_1, ..., x_n))^{\mathcal{B}} := \{(v_1, ..., v_n) \mid v_1, ..., v_n \in \{0, 1\} \text{ and } \phi[x_1 \mapsto v_1, ..., x_n \mapsto v_n] \equiv 1\}.$$

Prove the following claims:

- a) \mathcal{B} is admissible.
- b) Satisfiability of ALC(B)-concepts w.r.t. general TBoxes is EXPTIME-complete.

Exercise 51

Let L be a language over the alphabet Σ , and consider the concrete domain

$$\mathcal{D}_L \coloneqq (\Sigma^*, \{\perp_{\mathcal{D}_L}, \top_{\mathcal{D}_L}, \in L, \notin L\}).$$

For each of the following cases, check whether \mathcal{D}_L is admissible, and if concept satisfiability is decidable - both without a TBox and w.r.t. a general TBox.

- a) $L \in P$
- b) $L \in \mathsf{PSpace}$
- c) $L \in ExpTime$
- d) L is undecidable