

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Description Logics

Exercise Sheet 14

PD Dr.-Ing. habil. Anni-Yasmin Turhan/Dipl.-Math. Francesco Kriegel Winter Semester 2015/16

Exercise 52

Prove or refute the following claim:

For a TBox \mathcal{T} there can be exponentially many MinAs for a consequence $A \sqsubseteq_{\mathcal{T}} B$.

Exercise 53

Let \mathcal{L}_1 and \mathcal{L}_2 be two DL-languages, and C_1, \ldots, C_n be \mathcal{L}_1 -concepts. A \mathcal{L}_2 -concept *C* is called \mathcal{L}_2 -least common subsumer (lcs) of C_1, \ldots, C_n if the following conditions are satisfied:

- (1) $C_i \sqsubseteq C$ for all $i, 1 \le i \le n$, and
- (2) for all \mathcal{L}_2 -concepts D it holds that $C \sqsubseteq D$ if $C_i \sqsubseteq D$ for all $i, 1 \le i \le n$.

This generalizes the standard notion of least common subsumers, since it allows different logics for C_1, \ldots, C_n and their lcs.¹

Consider the following \mathcal{FLE} -concepts:

$$C_1 = \exists r. C \sqcap \exists r. D \sqcap \forall r. (A \sqcap B),$$

$$C_2 = \exists r. B \sqcap \exists r. D \sqcap \forall r. (A \sqcap D).$$

Find

- a) the $\mathcal{EL}\text{-lcs},$
- b) the \mathcal{FLE} -lcs², and
- c) the $\mathcal{ALC}\text{-lcs}$

of C_1 and C_2 .

¹It is easily verified that all \mathcal{L}_2 -lcs of \mathcal{L}_1 -concepts $C_1, ..., C_n$ are unique up to equivalence, and hence we may speak of *the* lcs.

 $^{{}^{2}\}mathcal{FLE}$ provides conjunction, existential restrictions, and value restrictions.

Exercise 54

Let $\mathcal{K} = (\mathcal{A}, \mathcal{T})$ be a knowledge base, and i_1, \dots, i_n be individuals occuring in \mathcal{A} .

A concept *C* is called *most specific concept of* $i_1, ..., i_n$ *w.r.t.* \mathcal{K} if it satisfies the following statements:

- (1) all individuals i_1, \ldots, i_n are instances of C w.r.t. \mathcal{K} , and
- (2) for all concept descriptions D it holds that $C \sqsubseteq_T D$ if all individuals i_1, \ldots, i_n are instances of D w.r.t. \mathcal{K} .

Prove that the most specific concept of $i_1, ..., i_n$ w.r.t. \mathcal{K} is equivalent to the least common subsumer w.r.t. \mathcal{T} of the most specific concepts of $i_1, ..., i_n$ w.r.t. \mathcal{K} , i.e.

 $\mathsf{msc}_{\mathcal{K}}(i_1, \dots, i_n) \equiv \mathsf{lcs}_{\mathcal{T}}(\mathsf{msc}_{\mathcal{K}}(i_1), \dots, \mathsf{msc}_{\mathcal{K}}(i_n))$