Interpretations of \mathcal{ALC} can be viewed as graphs (with labeled edges and nodes).

- We introduce the notion of bisimulation between graphs/interpretations.
- We show that \mathcal{ALC}-concepts cannot distinguish bisimilar nodes.
- We use this to show restrictions of the expressive power of \mathcal{ALC}.
- We use this to show interesting properties of models for \mathcal{ALC}:
 - tree model property
 - closure under disjoint union
- We show the finite model property of \mathcal{ALC}.
Definition 3.1 (bisimulation)

Let \mathcal{I}_1 and \mathcal{I}_2 be interpretations.

The relation $\rho \subseteq \Delta_{\mathcal{I}_1} \times \Delta_{\mathcal{I}_2}$ is a bisimulation between \mathcal{I}_1 and \mathcal{I}_2 iff

- $d_1 \rho d_2$ implies $d_1 \in A_{\mathcal{I}_1}$ iff $d_2 \in A_{\mathcal{I}_2}$ for all $A \in \mathcal{N}_C$

- $d_1 \rho d_2$ and $(d_1, d_1') \in r_{\mathcal{I}_1}$ implies the existence of $d'_2 \in \Delta_{\mathcal{I}_2}$ such that $d_1' \rho d_2'$ and $(d_2, d'_2) \in r_{\mathcal{I}_2}$ for all $r \in \mathcal{N}_R$

- $d_1 \rho d_2$ and $(d_2, d'_2) \in r_{\mathcal{I}_2}$ implies the existence of $d'_1 \in \Delta_{\mathcal{I}_1}$ such that $d_1' \rho d_2'$ and $(d_1, d'_1) \in r_{\mathcal{I}_1}$ for all $r \in \mathcal{N}_R$

Note:

- $\mathcal{I}_1 = \mathcal{I}_2$ is possible
- the empty relation \emptyset is a bisimulation.
Let \mathcal{I}_1 and \mathcal{I}_2 be interpretations and $d_1 \in \Delta^{\mathcal{I}_1}$, $d_2 \in \Delta^{\mathcal{I}_2}$.

$(\mathcal{I}_1, d_1) \sim (\mathcal{I}_2, d_2)$ \quad \text{iff} \quad \text{there is a bisimulation } \rho \text{ between } \mathcal{I}_1 \text{ and } \mathcal{I}_2 \text{ such that } d_1 \rho d_2$

Theorem 3.2 (bisimulation invariance of \mathcal{ALC})

If $(\mathcal{I}_1, d_1) \sim (\mathcal{I}_2, d_2)$, then the following holds for all \mathcal{ALC}-concepts C:

$$d_1 \in C^{\mathcal{I}_1} \quad \text{iff} \quad d_2 \in C^{\mathcal{I}_2}$$

“\mathcal{ALC}-concepts cannot distinguish between d_1 and d_2”

Proof: blackboard
Expressive power of \mathcal{ALC}

We have introduced extensions of \mathcal{ALC} by the concept constructors number restrictions, nominals and the role constructor inverse role.

How can we show that these constructors really extend \mathcal{ALC}, i.e., that they cannot be expressed using the constructors of \mathcal{ALC}.

To this purpose, we show that, using any of these constructors, we can construct concept descriptions

- that cannot be expressed by \mathcal{ALC}-concept descriptions,
- i.e., there is no equivalent \mathcal{ALC}-concept description.
Expressive power of \mathcal{ALC}

Proposition 3.3 (\mathcal{ALCN} is more expressive than \mathcal{ALC})

No \mathcal{ALC}-concept description is equivalent to the \mathcal{ALCN}-concept description ($\leq 1r$).

Proof: blackboard
Expressive power of \mathcal{ALC}

Proposition 3.4 (\mathcal{ALCT} is more expressive than \mathcal{ALC})

No \mathcal{ALC}-concept description is equivalent to the \mathcal{ALCT}-concept description $\exists r^{-1}.\top$.

Proof: blackboard
Proposition 3.5 (\mathcal{ALCO} is more expressive than \mathcal{ALC})

No \mathcal{ALC}-concept description is equivalent to the \mathcal{ALCO}-concept description $\{a\}$.

Proof: blackboard
Tree model property of \mathcal{ALC}.

Recall that interpretations can be viewed as graphs:

- nodes are the elements of $\Delta^\mathcal{I}$;
- interpretation of role names yields edges;
- interpretation of concept names yields node labels.

Starting with a given node, the graph can be unraveled into a tree without "changing membership" in concepts.
Definition 3.6 (tree model)

Let \mathcal{T} be a TBox and C a concept description.

The interpretation \mathcal{I} is a tree model of C w.r.t. \mathcal{T} iff \mathcal{I} is a model of \mathcal{T}, and the graph $$(\Delta^I, \bigcup_{r \in N_R} r^I)$$ is a tree whose root belongs to C^I.

Theorem 3.7 (tree model property of \mathcal{ALC})

\mathcal{ALC} has the tree model property,

i.e., if \mathcal{T} is an \mathcal{ALC}-TBox and C an \mathcal{ALC}-concept description such that C is satisfiable w.r.t. \mathcal{T}, then C has a tree model w.r.t. \mathcal{T}.

Proof: blackboard
Proposition 3.8 (no tree model property)

\(\mathcal{ALCO} \) does not have the tree model property.

Proof:

The concept \(\{a\} \) does not have a tree model w.r.t. \(\{a\} \subseteq \exists r. \{a\} \).
Disjoint union

Definition 3.9

Let \mathcal{I}_1 and \mathcal{I}_2 be interpretations over disjoint domains.

Their disjoint union $\mathcal{I}_1 \uplus \mathcal{I}_2$ is defined as follows:

\[
\begin{align*}
\Delta^{\mathcal{I}_1 \uplus \mathcal{I}_2} &= \Delta^{\mathcal{I}_1} \cup \Delta^{\mathcal{I}_2} \\
A^{\mathcal{I}_1 \uplus \mathcal{I}_2} &= A^{\mathcal{I}_1} \cup A^{\mathcal{I}_2} \text{ for all } A \in N_C \\
r^{\mathcal{I}_1 \uplus \mathcal{I}_2} &= r^{\mathcal{I}_1} \cup r^{\mathcal{I}_2} \text{ for all } r \in N_R
\end{align*}
\]

Lemma 3.10

For all \mathcal{ALC}-concept descriptions C, and all $d \in \Delta^{\mathcal{I}_i}$ with $i \in \{1, 2\}$ we have

\[
d \in C^{\mathcal{I}_i} \text{ iff } d \in C^{\mathcal{I}_1 \uplus \mathcal{I}_2}
\]
Definition 3.9

Let \(\mathcal{I}_1 \) and \(\mathcal{I}_2 \) be interpretations over disjoint domains.

Their disjoint union \(\mathcal{I}_1 \uplus \mathcal{I}_2 \) is defined as follows:

\[
\begin{align*}
\Delta^{\mathcal{I}_1 \uplus \mathcal{I}_2} & = \Delta^{\mathcal{I}_1} \cup \Delta^{\mathcal{I}_2} \\
A^{\mathcal{I}_1 \uplus \mathcal{I}_2} & = A^{\mathcal{I}_1} \cup A^{\mathcal{I}_2} \quad \text{for all } A \in N_C \\
r^{\mathcal{I}_1 \uplus \mathcal{I}_2} & = r^{\mathcal{I}_1} \cup r^{\mathcal{I}_2} \quad \text{for all } r \in N_R
\end{align*}
\]

Theorem 3.10b

Let \(\mathcal{I}_1 \) and \(\mathcal{I}_2 \) be interpretations over disjoint domains, and \(\mathcal{T} \) an \(\mathcal{ALC} \)-TBox.

If both \(\mathcal{I}_1 \) and \(\mathcal{I}_2 \) are a model of \(\mathcal{T} \), then \(\mathcal{I}_1 \uplus \mathcal{I}_2 \) is also a model of \(\mathcal{T} \).

\textit{Proof: blackboard}
Finite model property

Definition 3.11 (finite model)

Let \mathcal{T} be a TBox and C a concept description.

The interpretation \mathcal{I} is a finite model of C w.r.t. \mathcal{T} iff

\mathcal{I} is a model of \mathcal{T}, $C^\mathcal{I} \neq \emptyset$, and $\Delta^\mathcal{I}$ is finite.

Theorem 3.12 (finite model property)

\mathcal{ALC} has the finite model property,

i.e., if \mathcal{T} is an \mathcal{ALC}-TBox and C an \mathcal{ALC}-concept description such that

C is satisfiable w.r.t. \mathcal{T}, then C has a finite model w.r.t. \mathcal{T}.

Proof first requires some definitions.
Size of \mathcal{ALC}-concept descriptions

- $C = A$: $|A| := 1$ for $A \in N_C$;
- $C = C_1 \cap C_2$ or $C = C_1 \cup C_2$: $|C| := 1 + |C_1| + |C_2|$;
- $C = \neg D$ or $C = \exists r.D$ or $C = \forall r.D$: $|C| := 1 + |D|$.

\[|A \cap \exists r. (A \cup B)| = 1 + 1 + (1 + (1 + 1 + 1)) = 6 \]

Counts the occurrences of concept names, role names, and Boolean operators.

\[|T| := \sum_{C \in D \in T} |C| + |D| \]
Subdescriptions of \mathcal{ALC}-concept descriptions

- $C = A$: $\text{Sub}(A) := \{A\}$ for $A \in N_C$;
- $C = C_1 \cap C_2$ or $C = C_1 \cup C_2$: $\text{Sub}(C) := \{C\} \cup \text{Sub}(C_1) \cup \text{Sub}(C_2)$;
- $C = \neg D$ or $C = \exists r.D$ or $C = \forall r.D$: $\text{Sub}(C) := \{C\} \cup \text{Sub}(D)$.

$\text{Sub}(A \cap \exists r.(A \cup B)) = \{A \cap \exists r.(A \cup B), A, \exists r.(A \cup B), A \cup B, B\}$

$\text{Sub}(\mathcal{T}) := \bigcup_{C \subseteq D \in \mathcal{T}} \text{Sub}(C) \cup \text{Sub}(D)$

- the cardinality of $\text{Sub}(C)$ is bounded by $|C|$;
- the cardinality of $\text{Sub}(\mathcal{T})$ is bounded by $|\mathcal{T}|$.
Definition 3.13 (S-type)

Let S be a finite set of concept descriptions, and \mathcal{I} an interpretation.

The S-type of $d \in \Delta^\mathcal{I}$ is defined as

$$t_S(d) := \{ C \in S \mid d \in C^\mathcal{I} \}.$$

Lemma 3.14 (number of S-types)

$$|\{ t_S(d) \mid d \in \Delta^\mathcal{I} \}| \leq 2^{|S|}$$

Proof: obvious
Definition 3.15 (S-filtration)

Let S be a finite set of concept descriptions, and \mathcal{I} an interpretation.

We define an equivalence relation \simeq on $\Delta^\mathcal{I}$ as follows:

$$d \simeq e \iff t_S(d) = t_S(e)$$

The \simeq-equivalence class of $d \in \Delta^\mathcal{I}$ is denoted by $[d]$.

The S-filtration of \mathcal{I} is the following interpretation \mathcal{J}:

- $\Delta^\mathcal{J} := \{[d] \mid d \in \Delta^\mathcal{I}\}$
- $A^\mathcal{J} := \{[d] \mid \exists d' \in [d]. d' \in A^\mathcal{I}\}$ for all $A \in N_C$
- $r^\mathcal{J} := \{([d], [e]) \mid \exists d' \in [d], e' \in [e]. (d', e') \in r^\mathcal{I}\}$ for all $r \in N_R$

Obviously, $|\Delta^\mathcal{J}| \leq 2^{|S|}$.
Filtration

important property

We say that the finite set S of concept descriptions is closed iff

$$
\bigcup \{ \text{Sub}(C') \mid C' \in S \} \subseteq S
$$

Lemma 3.16

Let S be a finite set of \mathcal{ALC}-concept descriptions, that is closed, \mathcal{I} an interpretation, and \mathcal{J} the S-filtration of \mathcal{I}. Then we have

$$
d \in C^\mathcal{I} \iff [d] \in C^\mathcal{J}
$$

for all $d \in \Delta^\mathcal{I}$ and $C \in S$.

Proof: blackboard
The following proposition shows that \mathcal{ALC} satisfies a property that is even stronger than the finite model property.

Proposition 3.17 (bounded model property)

Let \mathcal{T} is an \mathcal{ALC}-TBox and C an \mathcal{ALC}-concept description, and $S := \text{Sub}(C) \cup \text{Sub}(\mathcal{T})$.

If C is satisfiable w.r.t. \mathcal{T}, then there is a model $\hat{\mathcal{I}}$ of \mathcal{T} such that $C^{\hat{\mathcal{I}}} \neq \emptyset$ and $|\Delta^{\hat{\mathcal{I}}}| \leq 2^{|S|}$.

Proof: let \mathcal{I} be a model of \mathcal{T} with $C^\mathcal{I} \neq \emptyset$, and $\hat{\mathcal{I}}$ be the S-filtration of \mathcal{I}.

We must show:

- $|\Delta^{\hat{\mathcal{I}}}| \leq 2^{|S|}$ \hspace{1cm} \text{Lemma 3.14}
- $C^{\hat{\mathcal{I}}} \neq \emptyset$
- $\hat{\mathcal{I}}$ is a model of \mathcal{T} \hspace{1cm} \text{follow from Lemma 3.16}
The following proposition shows that \mathcal{ALC} satisfies a property that is even stronger than the finite model property.

Proposition 3.17 (bounded model property)

Let \mathcal{T} be a TBox, C a concept description, and $S := \text{Sub}(C) \cup \text{Sub}(\mathcal{T})$.

If C is satisfiable w.r.t. \mathcal{T}, then there is a model \mathcal{I} of \mathcal{T} such that $C^\mathcal{I} \neq \emptyset$ and $|\Delta^\mathcal{I}| \leq 2^{|S|}$.

Corollary 3.17b (decidability)

In \mathcal{ALC}, satisfiability of a concept description w.r.t. a TBox is decidable.
No finite model property

Theorem 3.18 (no finite model property)

\[\mathcal{ALCN} \mathcal{T}\] does not have the finite model property.

Proof: blackboard
Chapter 4

Reasoning with tableaux algorithms

We start with an algorithm for deciding consistency of an ABox without a TBox since this covers most of the inference problems introduced in Chapter 2:

- acyclic TBoxes can be eliminated by expansion
- satisfiability, subsumption, and the instance problem can be reduced to ABox consistency

The tableau-based consistency algorithm tries to generate a finite model for the input ABox \mathcal{A}_0:

- applies tableau rules to extend the ABox \textit{one rule per constructor}
- checks for obvious contradictions
- an ABox that is \textit{complete} (no rule applies) and \textit{open} (contains no obvious contradictions) describes a model
Tableau algorithm

\[\mathcal{T} \text{ GoodStudent} \equiv \text{Smart} \sqcap \text{Studious} \]

Subsumption question:
\[\exists \text{attended. Smart} \sqcap \exists \text{attended. Studious} \sqsubseteq_{\mathcal{T}} \exists \text{attended. GoodStudent} \]

Reduction to satisfiability: is the following concept unsatisfiable w.r.t. \(\mathcal{T} \)?
\[\exists \text{attended. Smart} \sqcap \exists \text{attended. Studious} \sqcap \neg \exists \text{attended. GoodStudent} \]

Reduction to consistency: is the following ABox inconsistent w.r.t. \(\mathcal{T} \)?
\[\{ (\exists \text{attended. Smart} \sqcap \exists \text{attended. Studious} \sqcap \neg \exists \text{attended. GoodStudent})(a) \} \]

Expansion: is the following ABox inconsistent?
\[\{ (\exists \text{attended. Smart} \sqcap \exists \text{attended. Studious} \sqcap \neg \exists \text{attended. (Smart} \sqcap \text{Studious)})(a) \} \]

Negation normal form: is the following ABox inconsistent?
\[\{ (\exists \text{attended. Smart} \sqcap \exists \text{attended. Studious} \sqcap \forall \text{attended. (}\neg \text{Smart} \sqcup \neg \text{Studious)})(a) \} \]
Is the following ABox inconsistent?

\{ (\exists \text{attended. Smart} \sqcap \exists \text{attended. Studious} \sqcap \forall \text{attended.} (\neg \text{Smart} \sqcup \neg \text{Studious}))(a) \}

\exists r. A \sqcap \exists r. B \sqcap \forall r. (\neg A \sqcup \neg B)

\exists r. A, \exists r. B, \forall r. (\neg A \sqcup \neg B)

complete and open ABox
yields a model for the input ABox
and thus a counterexample to the subsumption relationship
Tableau algorithm

Input: An \mathcal{ALC}-ABox \mathcal{A}_0

Output: “yes” if \mathcal{A}_0 is consistent
“no” otherwise

Preprocessing:

transform all concept descriptions in \mathcal{A}_0 into negation normal form (NNF)
by applying the following rules:

$$\neg (C \cap D) \leadsto \neg C \cup \neg D$$
$$\neg (C \cup D) \leadsto \neg C \cap \neg D$$
$$\neg \neg C \leadsto C$$
$$\neg (\exists r.C') \leadsto \forall r.\neg C'$$
$$\neg (\forall r.C') \leadsto \exists r.\neg C'$$

The NNF can be computed in polynomial time, and it does not change the semantics of the concept.
Tableau algorithm

Data structure:
finite set of ABoxes rather than a single ABox: start with \(\{ A_0 \} \)

Application of tableau rules:
the rules take one ABox from the set and replace it by finitely many new ABoxes

Termination:
if no more rules apply to any ABox in the set

Answer:
“consistent” if the set contains an open ABox, i.e., an ABox not containing an obvious contradiction of the form

\[A(a) \quad \text{and} \quad \neg A(a) \quad \text{for some individual name } a \]

“inconsistent” if all ABoxes in the set are closed (i.e., not open)
Tableau rules

<table>
<thead>
<tr>
<th>Rule</th>
<th>Condition</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\square)-rule</td>
<td>(\mathcal{A}) contains ((C \square D)(a)), but not both (C(a)) and (D(a))</td>
<td>(\mathcal{A}' := \mathcal{A} \cup {C(a), D(a)})</td>
</tr>
<tr>
<td>(\sqcap)-rule</td>
<td>(\mathcal{A}) contains ((C \sqcap D)(a)), but neither (C(a)) nor (D(a))</td>
<td>(\mathcal{A}' := \mathcal{A} \cup {C(a)}) and (\mathcal{A}'' := \mathcal{A} \cup {D(a)})</td>
</tr>
<tr>
<td>(\exists)-rule</td>
<td>(\mathcal{A}) contains ((\exists r.C)(a)), but there is no (c) with ({r(a, c), C(c)} \subseteq \mathcal{A})</td>
<td>(\mathcal{A}' := \mathcal{A} \cup {r(a, b), C(b)}) where (b) is a new individual name</td>
</tr>
<tr>
<td>(\forall)-rule</td>
<td>(\mathcal{A}) contains ((\forall r.C)(a)) and (r(a, b)), but not (C(b))</td>
<td>(\mathcal{A}' := \mathcal{A} \cup {C(b)})</td>
</tr>
</tbody>
</table>
Tableau algorithm

Lemma 4.1
local correctness: rules preserve consistency

Lemma 4.8
termination: no infinite paths

is a decision procedure for consistency

A_0
deterministic rule

nondeterministic rule

complete ABoxes

soundness: any complete and open ABox has a model

completeness: closed ABoxes do not have a model

Lemma 4.2