

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Description Logics

Exercise Sheet 2

Winter Semester 2016 24th October 2016

PD Dr.-Ing. habil. Anni-Yasmin Turhan & İsmail İlkan Ceylan

Exercise 2.5 Extend the mapping τ_x of \mathcal{ALC} -concept descriptions to first-order formulas given in the lecture to the description logic \mathcal{ALCQ} , which augments \mathcal{ALC} with qualified number restrictions.

Exercise 2.6 Recall that the description logic \mathcal{ALC} is equipped with the concept constructors negation (\neg), conjunction (\square), disjunction (\sqcup), existential restriction ($\exists r.C$), and universal restriction ($\forall r.C$). Each subset of this set of constructors gives rise to a fragment of \mathcal{ALC} .

Identify all minimal fragments that are equivalent to \mathcal{ALC} in the sense that for every \mathcal{ALC} -concept, there is an equivalent concept in the fragment. (Two concepts are equivalent iff they have the same extension in every interpretation.)

Exercise 2.7 Consider the (graphical representation of the) interpretation \mathcal{I} with $\Delta^{\mathcal{I}} = \{d, e, f, g\}$:

For each of the following \mathcal{ALCNI} -concepts *C*, list all elements *x* of $\Delta^{\mathcal{I}}$ such that $x \in C^{\mathcal{I}}$:

- (a) $A \sqcup B$
- (b) $\exists s. \neg A$
- (c) $\forall s.A$
- (d) $(\geq 2 s)$
- (e) $\exists s. \exists s. \exists s. \exists s. A$
- (f) $\forall s^{-1}. \exists s. \exists s. \exists s. A$
- (g) $\neg \exists r.(\neg A \sqcap \neg B)$
- (h) $\exists s.(A \sqcap \forall s. \neg B) \sqcap \neg \forall r. \exists r.(A \sqcup \neg A)$

Exercise 2.8 Consider the ABox

$$\mathcal{A} = \{ A(d), \ A(e), \ A(f), \ B(f), \ r(d,e), \ r(e,g), \ s(e,f), \ s(g,g), \ s(g,d) \}$$

with the following graphical representation:

For each of the following \mathcal{ALC} -concepts *C*, list all individuals that are instances of *C* w.r.t. \mathcal{A} . Compare your results to Exercise 7.

- (a) $A \sqcup B$
- (b) $\exists s. \neg A$
- (c) $\forall s.A$
- (d) $\exists s. \exists s. \exists s. \exists s. A$
- (e) $\neg \exists r.(\neg A \sqcap \neg B)$
- (f) $\exists s.(A \sqcap \forall s. \neg B) \sqcap \neg \forall r. \exists r.(A \sqcup \neg A)$

Exercise 2.9 Revisit the procedure for expanding TBoxes given in the proof of Proposition 2.6 of the lecture. Prove that

- (a) this procedure always terminates, and
- (b) that it returns a TBox that is equivalent to its input.

Hint for proving termination: Count, for each concept name A, the number of concept names (directly or indirectly) used in the definition of A.