

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Description Logics

Winter Semester 2016

Exercise Sheet 3 7th November 2016

PD Dr.-Ing. habil. Anni-Yasmin Turhan & İsmail İlkan Ceylan

Exercise 3.10 Consider the TBox

$$\mathcal{T} := \{ \neg (A \sqcup B) \sqsubseteq \bot, \quad A \sqsubseteq \neg B \sqcap \exists r.B, \quad D \sqsubseteq \forall r.A, \quad B \sqsubseteq \neg A \sqcap \exists r.A \},$$

the ABox

$$A := \{ r(a,b), \ r(a,c), \ r(a,d), \ r(d,c), \ (B \sqcap \forall r.D)(a), \ E(b), \ (\neg A)(c), \ (\exists s.\neg D)(d) \},$$

and the knowledge base $\mathcal{K} := \langle \mathcal{T}, \mathcal{A} \rangle$. Check for

- (a) the TBox \mathcal{T} ,
- (b) the ABox A, and
- (c) the knowledge base \mathcal{K} ,

whether it has a model. If it has one, specify such a model. If it does not have a model, explain why.

Exercise 3.11 Prove that existential restrictions are monotonic, i.e. show that

$$C \sqsubseteq_{\mathcal{T}} D \implies \exists r.C \sqsubseteq_{\mathcal{T}} \exists r.D.$$

Exercise 3.12 Prove the following result: Let $\mathcal{K} := \langle \mathcal{T}, \mathcal{A} \rangle$ be a knowledge base. If a is an instance of C w.r.t. \mathcal{K} and $C \sqsubseteq_{\mathcal{T}} D$, then a is an instance of D w.r.t. \mathcal{K} .

Exercise 3.13 Prove the following results. Let $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$ be a knowledge base, C an \mathcal{ALC} -concept, and a an individual name.

- (a) K is consistent iff $\tau(K)$ is consistent.
- (b) a is an instance of C w.r.t. \mathcal{K} iff $\tau(\mathcal{K}) \models \tau_x(C)(a)$.

Exercise 3.14 Let $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$ be a consistent knowledge base. We write $C \sqsubseteq_{\mathcal{K}} D$ if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ for every model \mathcal{I} of \mathcal{K} . Prove that for all \mathcal{ALC} -concepts C and D, we have $C \sqsubseteq_{\mathcal{K}} D$ iff $C \sqsubseteq_{\mathcal{T}} D$. *Hint:* Use disjoint unions.