

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Description Logics

Exercise Sheet 4

Winter Semester 2016 14th November 2016

PD Dr.-Ing. habil. Anni-Yasmin Turhan & İsmail İlkan Ceylan

Exercise 4.15 In the lecture, we defined bisimulations for \mathcal{ALC} -concepts s.t. they capture the expressive power of \mathcal{ALC} , i.e. that bisimulation invariance for \mathcal{ALC} -concepts follows.

- (a) Extend the notion of a bisimulation relation to ALCN s.t. bisimulation invariance for ALCN-concepts follows.
- (b) Show bisimulation invariance for the bisimulation relation defined in exercise (a).
- (c) Prove that \mathcal{ALCQ} is more expressive than \mathcal{ALCN} .

Exercise 4.16 Prove or refute the following claim:

If an \mathcal{ALC} -concept *C* is satisfiable w.r.t. an \mathcal{ALC} -TBox \mathcal{T} , then for all $n \ge 1$ there is a model \mathcal{I}_n of \mathcal{T} such that: $|C^{\mathcal{I}_n}| \ge n$.

Exercise 4.17 Prove that bisimulations are closed under

- (a) composition \circ , and
- (b) union \cup .

Exercise 4.18 Prove or refute the following claim:

Given an \mathcal{ALC} -concept C and an \mathcal{ALC} -TBox \mathcal{T} . If \mathcal{I} is an interpretation and \mathcal{J} its filtration w.r.t. $sub(C) \cup sub(\mathcal{T})$, then the relation $\rho = \{(d, [d]) \mid d \in \Delta^{\mathcal{I}}\}$ is a bisimulation.