

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Description Logics

Exercise Sheet 6

Winter Semester 2016 28th November 2016

PD Dr.-Ing. habil. Anni-Yasmin Turhan & İsmail İlkan Ceylan

Exercise 6.23 Prove Lemma 4.6 from the lecture.

- (a) $|\operatorname{Sub}(\mathcal{A}_0)| \leq \widehat{m}$
- (b) $|C| \leq \widehat{m}$ for all $C \in \operatorname{Sub}(\mathcal{A}_0)$
- (c) If \mathcal{A} is an ABox obtained by applying the tableau rules to \mathcal{A}_0 and x is an individual occuring in \mathcal{A} , then depth_{\mathcal{A}} $(x) \leq \widehat{m}$.

Exercise 6.24 The tableau algorithm for checking consistency of \mathcal{ALC} -ABoxes w.r.t. general TBoxes can be extended to inverse roles by adapting the \exists -rule and \forall -rule as follows: Let *C* be an \mathcal{ALCI} -concept, and *r* an \mathcal{ALCI} -role, i.e. *r* denotes a role or an inverse role name, and $(r^{-1})^{-1} = r$ holds.

 \exists -rule: Condition: \mathcal{A} contains $(\exists r.C)(a)$, *a* is not blocked, but there is no *b* with either $\{r(a,b), C(b)\} \subseteq \mathcal{A}$ or $\{r^{-1}(b,a), C(b)\} \subseteq \mathcal{A}$

Action: $\mathcal{A}' := \mathcal{A} \cup \{r(a, b), C(b)\}$ for a new individual *b* not occuring in \mathcal{A}

 \forall -rule: Condition: $(\forall r.C)(a) \in \mathcal{A}$ and $r(a,b) \in \mathcal{A}$ or $r^{-1}(b,a) \in \mathcal{A}$, but $C(b) \notin \mathcal{A}$

Action: $\mathcal{A}' := \mathcal{A} \cup \{C(b)\}$

- (a) Which blocking condition needs to be introduced to obtain a correct decision procedure?
- (b) Is the extended tableau algorithm for \mathcal{ALCI} sound and complete?

Exercise 6.25 Let $\mathcal{K} = \langle \mathcal{T}, \mathcal{A}_0 \rangle$ be an \mathcal{ALC} -knowledge base, where \mathcal{T} is a general TBox. The *precompletion of* \mathcal{K} is the set of ABoxes \mathcal{M} that is produced by the tableau algorithm when starting with the set of ABoxes $\{\mathcal{A}_0\}$ and exhaustively applying all tableau rules except the modified \exists -rule.

(a) Show that \mathcal{K} is consistent iff there is an open ABox $\mathcal{A} \in \mathcal{M}$ such that for all individual names a occurring in \mathcal{A} , the concept $C^a_{\mathcal{A}} := \prod_{C(a) \in \mathcal{A}} C$ is satisfiable w.r.t. \mathcal{T} .

Hint: For the "if" direction, proceed as follows: The correctness of the tableau algorithm for \mathcal{ALC} implies that, if $C^a_{\mathcal{A}}$ is satisfiable, then exhaustively applying all (!) rules to the set of ABoxes $\{\{C^a_{\mathcal{A}}(a)\}\}$ yields a set \mathcal{M}' that contains an open and complete ABox. Show how to join all these ABoxes to obtain an open and complete tableau for \mathcal{A} and conclude that \mathcal{A}_0 is consistent w.r.t. \mathcal{T} .

(b) Use the result from a) to prove that ABox consistency in ALC can be decided in deterministic exponential time.