

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Description Logics

Exercise Sheet 10

Winter Semester 2016

9th January 2017

PD Dr.-Ing. habil. Anni-Yasmin Turhan & İsmail İlkan Ceylan

Exercise 10.34 Determine whether Player 2 has a winning strategy in the PSPACE game $G = (\phi, \{p_0, p_2\}, \{p_1, p_3\}, <)$ with

$$\phi = (\neg p_0 \to p_1) \land ((p_0 \land p_1) \to (p_2 \lor p_3)) \land (\neg p_1 \to (p_3 \to \neg p_2))$$

and $p_i < p_j$ iff i < j.

Exercise 10.35 For each of the following EXPTIME games, determine whether Player 2 has a winning strategy:

- (a) $G_1 = (p \to q, \{p\}, \{q\}, \{p \mapsto 1, q \mapsto 0\}),$
- (b) $G_2 = (p \land q, \{q\}, \{p\}, \{p \mapsto 0, q \mapsto 0\}),$
- (c) $G_3 = (p_1 \land p_2 \leftrightarrow q, \{p_1, p_2\}, \{q\}, \{p_1 \mapsto 0, p_2 \mapsto 0, q \mapsto 1\}),$
- (d) $G_4 = (\phi, \Gamma_1, \Gamma_2, t_0)$ with
 - $\phi = (p_1 \land p_2 \land p_3 \land \neg q) \lor (\neg p_1 \land \neg p_2 \land \neg p_3 \land q),$
 - $\Gamma_1 = \{p_1, p_2, p_3\}, \Gamma_2 = \{q\},$
 - $t_0(p_1) = t_0(p_2) = t_0(p_3) = t_0(q) = 0.$

Exercise 10.36 A quantified Boolean formula is of the form $\phi = Q_1 p_1 \dots Q_n p_n \psi$ where $Q_1, \dots, Q_n \in \{\forall, \exists\}$ are quantifiers, p_1, \dots, p_n are propositional variables, and ψ is a propositional formula containing only the variables p_1, \dots, p_n .

Validity of such formulae is defined as follows:

- For n = 0, the formula φ does not contain variables, and thus is a Boolean combination of 0 and 1. Then φ is valid iff it evaluates to 1.
- For n > 0, we consider:

$$\phi_0 := Q_2 p_2 \dots Q_n p_n \cdot \psi[p_1 := 0]$$
, and
 $\phi_1 := Q_2 p_2 \dots Q_n p_n \cdot \psi[p_1 := 1].$

If $Q_1 = \exists$, then ϕ is valid iff one of ϕ_0 and ϕ_1 is valid.

If $Q_1 = \forall$, then ϕ is valid iff both ϕ_0 and ϕ_1 are valid.

QBF denotes the set of all valid quantified Boolean formulae. Prove that the problem of deciding the existence of winning strategy for Player 2 in PSPACE games is PSPACE-complete.