

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Description Logics

Exercise Sheet 11

Winter Semester 2016 16th January 2017

PD Dr.-Ing. habil. Anni-Yasmin Turhan & İsmail İlkan Ceylan

Exercise 11.37 The description logic S extends ALC with *transitivity axioms* trans(r) for roles $r \in N_R$. The semantics are defined as follows: $\mathcal{I} \models \text{trans}(r)$ if, and only if, $r^{\mathcal{I}}$ is transitive. Furthermore, an S-knowledge base $(\mathcal{T}, \mathcal{A}, \mathcal{R})$ consists of an ALC-knowledge base $(\mathcal{T}, \mathcal{A})$ and a *RBox* \mathcal{R} of transitivity axioms. Prove the following claims:

- (a) trans(*r*) cannot be expressed in \mathcal{ALC} , i.e., \mathcal{S} is more expressive than \mathcal{ALC} . **Hint:** Show that the FOL-formula $\forall x.\forall y.\forall z.(R(x,y) \land R(y,z)) \rightarrow R(x,z)$ is not equivalent to a formula in the two-variable-fragment of FOL.
- (b) For an arbitrary TBox \mathcal{T} , the concept description $C_{\mathcal{T}}$ is defined as $\prod_{C \sqsubseteq D \in \mathcal{T}} \neg C \sqcup D$. Then \mathcal{T} and $\{\top \sqsubseteq C_{\mathcal{T}}\}$ have the same models.
- (c) Let $\mathcal{K} = (\mathcal{T}, \mathcal{A}, \mathcal{R})$ be a \mathcal{S} -knowledge base such that w.l.o.g. \mathcal{T} consists of a single GCI $\top \sqsubseteq C_{\mathcal{T}}$, and $C_{\mathcal{T}}$ is in NNF. Define the \mathcal{ALC} -knowledge base $\mathcal{K}^+ \coloneqq (\mathcal{T}^+, \mathcal{A})$ where $\mathcal{T}^+ \coloneqq \mathcal{T} \cup \{\forall r. C \sqsubseteq \forall r. \forall r. C \mid \operatorname{trans}(r) \in \mathcal{R}, \forall r. C \in \operatorname{Sub}(C_{\mathcal{T}})\}.$ Then \mathcal{K} is consistent if, and only if, \mathcal{K}^+ is consistent. Consequently, the tableaux algorithm for \mathcal{ALC} can also be utilized for \mathcal{S} .
- (d) The problem of deciding consistency of a *S*-knowledge base (with a general TBox) is EXPTIMEcomplete.

Exercise 11.38 Let f_1, \ldots, f_m and g_1, \ldots, g_n be (not necessarily distinct) abstract features. A *feature* agreement is a concept of the form $(f_1 \circ \cdots \circ f_m) \downarrow (g_1 \circ \cdots \circ g_n)$ with the semantics:

$$\left(\left(f_{1}\circ\cdots\circ f_{m}\right)\downarrow\left(g_{1}\circ\cdots\circ g_{n}\right)\right)^{\mathcal{I}}\coloneqq\left\{d\in\Delta^{\mathcal{I}}\mid f_{m}^{\mathcal{I}}(\cdots f_{2}^{\mathcal{I}}(f_{1}^{\mathcal{I}}(d))\cdots)=g_{n}^{\mathcal{I}}(\cdots g_{2}^{\mathcal{I}}(g_{1}^{\mathcal{I}}(d))\cdots)\right\}$$

Feature disagreements (\uparrow) are defined analogously. The description logic ALCF extends ALC with feature agreements and feature disagreements. Show that satisfiability w.r.t. general TBoxes is undecidable for ALCF.

Hint. Use a reduction from the domino problem presented in the lecture.