

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Description Logics

Exercise Sheet 12

Winter Semester 2016 23rd January 2017

PD Dr.-Ing. habil. Anni-Yasmin Turhan & İsmail İlkan Ceylan

Exercise 12.39 Consider the concrete domain $\mathcal{N} := (\Delta^{\mathcal{N}}, \Phi^{\mathcal{N}})$ defined in Section 7.2 of the lecture. Show that \mathcal{N} is admissible.

$$\begin{split} & \Delta^{\mathcal{N}} := \mathbb{N} \\ & \Phi^{\mathcal{N}} := \{=, =_0, +1, \top_{\mathcal{N}}\} \cup \{\text{negations of } =, =_0, +1, \top_{\mathcal{N}}\} \end{split}$$

Exercise 12.40 Let \mathcal{D} be a concrete domain and $\mathcal{ALC}(\mathcal{D})$ denote the extension of \mathcal{ALC} with the concrete domain \mathcal{D} . Show the following statements:

- (a) If f is an abstract feature, then $\exists f.C$ is equivalent to $\exists f.\top \sqcap \forall f.C$.
- (b) If \mathcal{D} contains only unary predicates, every $\mathcal{ALC}(\mathcal{D})$ -concept can be 'emulated' by a corresponding \mathcal{ALCN} -concept.

Exercise 12.41 Consider the concrete domain \mathcal{B} where $\Delta^{\mathcal{B}} \coloneqq \{0,1\}$, and the predicate set is given as

- (i) $\Phi^{\mathcal{B}} \coloneqq \{ \perp_{\mathcal{B}}, \top_{\mathcal{B}}, =_0, =_1 \}$,
- (ii) $\Phi^{\mathcal{B}} \coloneqq \{\phi(x_1, \dots, x_n) \mid n \in \mathbb{N} \text{ and } \phi \text{ is a propositional formula over the variables } x_1, \dots, x_n\}$ such that

$$(\phi(x_1,...,x_n))^{\mathcal{B}} \coloneqq \{(v_1,...,v_n) \mid v_1,...,v_n \in \{0,1\} \text{ and } \phi[x_1 \mapsto v_1,...,x_n \mapsto v_n] \equiv 1\}.$$

Prove the following claims:

- (a) \mathcal{B} is admissible.
- (b) Satisfiability of $\mathcal{ALC}(\mathcal{B})$ -concepts w.r.t. general TBoxes is EXPTIME-complete.