Exercise 4.1 Prove or refute the following claim: If an \textit{ALC}-concept \(C \) is satisfiable w.r.t. an \textit{ALC}-TBox \(T \), then for all \(n \geq 1 \) there is a finite model \(I_n \) of \(T \) such that \(|C_{I_n}| \geq n \).

Does the claim hold if the condition “\(|C_{I_n}| \geq n \)” is replaced by “\(|C_{I_n}| = n \)”?

Exercise 4.2 Prove or refute the following claim: Given an \textit{ALC}-concept \(C \) and an \textit{ALC}-TBox \(T \), if \(I \) is an interpretation and \(J \) its filtration w.r.t. \(\text{sub}(C) \cup \text{sub}(T) \) (see Definition 3.14), then the relation \(\rho = \{(d, [d]) \mid d \in \Delta^I\} \) is a bisimulation between \(I \) and \(J \).

Exercise 4.3 We consider bisimulations between an interpretation \(I \) and itself, which are called bisimulations on \(I \). For two elements \(d, e \in \Delta^I \), we write \(d \approx_I e \) if they are bisimilar, i.e., if there is a bisimulation \(\rho \) on \(I \) such that \(d \rho e \).

(a) Show that \(\approx_I \) is an equivalence relation on \(\Delta^I \).
(b) Show that \(\approx_I \) is a bisimulation on \(I \).
(c) Show that, for finite interpretations \(I \), the relation \(\approx_I \) can be computed in time polynomial in the cardinality of \(I \).

Consider the interpretation \(J \) that is defined like the filtration (Definition 3.14), but with \(\approx_I \) instead of \(\approx \).

(d) Show that \(\rho = \{(d, [d]_{\approx_I}) \mid d \in \Delta^I\} \) is a bisimulation between \(I \) and \(J \).
(e) Show that, if \(I \) is a model of an \textit{ALC}-concept \(C \) w.r.t. an \textit{ALC}-TBox \(T \), then so is \(J \).
(f) Why can we not use the previous result to show the finite model property for \textit{ALC}?

Exercise 4.4 For the following interpretation \(I \), draw the unraveling of \(I \) at \(d \) up to depth 5, i.e., restricted to \(d \)-paths of length at most 5 (see Definition 3.21):

![Diagram](image)

Exercise 4.5 Prove or refute the following claim: If \(\mathcal{K} \) is an \textit{ALC}-knowledge base and \(C \) an \textit{ALC}-concept description such that \(C \) is satisfiable w.r.t. \(\mathcal{K} \), then \(C \) has a tree model w.r.t. \(\mathcal{K} \).