Exercise 11.1 Let \mathcal{T}_1 be an \mathcal{EL}-TBox, $C, D \in \mathcal{EL}$-concepts, and $\mathcal{T}_2 = \mathcal{T}_1 \cup \{A \sqsubseteq C, D \sqsubseteq B\}$, where A, B are new concept names (as in Lemma 6.1). Show that \mathcal{T}_2 is a conservative extension of \mathcal{T}_1. Is this still the case after adding $A \sqsubseteq B$ to \mathcal{T}_2? What about adding $B \sqsubseteq A$?

Exercise 11.2 Consider the TBox

$$\mathcal{T} = \{A \sqsubseteq B \cap \exists r.C, B \cap \exists r.B \sqsubseteq C \cap D, C \sqsubseteq (\exists r. A) \cap B, (\exists r. \exists r. B) \cap D \sqsubseteq \exists r. (A \cap B)\},$$

where A, B, C, D are concept names. Use the classification procedure for \mathcal{EL} to check whether the following subsumption relationships hold w.r.t. \mathcal{T}:

- $A \sqsubseteq B$
- $A \sqsubseteq \exists r. \exists r. A$
- $B \cap \exists r. A \sqsubseteq \exists r. C$