Chapter 4 Reasoning in DLs with tableau algorithms

We start with an algorithm for deciding consistency of an ABox without a TBox
since this covers most of the inference problems introduced in Chapter 2:

e acyclic TBoxes can be eliminated by expansion

e satisfiability, subsumption, and the instance problem can be reduced to ABox
consistency

The tableau-based consistency algorithm tries to generate a finite model for
the input ABox Ay:

e applies expansion rules to extend the ABox one rule per constructor

e checks for obvious contradictions (clashes)

e an ABox that is complete (no rule applies) and clash-free (no obvious
contradictions) describes a model

Dresden © Franz Baader

Tableau algorithm example

T | GoodStudent = Smart ['1 Studious

Subsumption question:

Jattended.Smart ' Jattended.Studious E?T dattended.GoodStudent

Reduction to satisfiability: is the following concept unsatisfiable w.r.t. 7 ?

Jattended.Smart M Jdattended.Studious N —dattended.GoodStudent

Reduction to consistency: is the following ABox inconsistent w.r.t. 7 ?

{ a :(Jattended.Smart M Jattended.Studious M —Jattended.GoodStudent) }

Expansion: is the following ABox inconsistent?

{ a:(Jattended.Smart 1 Jattended. Studious " —Jattended. (Smart 1 Studious)) }

Negation normal form: is the following ABox inconsistent?
{ a:(Jattended.Smart M Jattended. Studious 1 Vattended.(—Smart LI =Studious)) }

Dresden © Franz Baader

Tableau algorithm

example continued

Is the following ABox inconsistent?

{ a :(Jattended.Smart M Jattended.Studious M Vattended.(—~Smart LI —Studious)) }

Ir. AN Ir.BOVr.(mAU-B)
@ r.A, Ir.B, Vr.(-AU-B)

@ ©

A B
—AU-B —AU-B
complete and clash-free ABox and thus a counterexample
yields a model for the input ABox to the subsumption relationship

Dresden © Franz Baader

Tableau algorithm more formal description

Input: An ALC-ABox A

Output: “yes” if Ay is consistent
“no” otherwise
negation only in front
of concept names
Preprocessing: normalize the ABox /

— transform all concept descriptions in A into negation normal form (NNF)
by applying the following equivalence-preserving rules:

—|(C|_|D> ~ =C U =D
ﬁ(CLID) ~ =C T1=D
—=C ~ O
—(3Ir.C) ~ Vr.=C
=(Vr.C) ~ dr.=C

The NNF can be computed in polynomial time, and it does not change the

semantics of the concept.
Exercise!

Dresden © Franz Baader

Tableau algorithm more formal description

Input: An ALC-ABox A

Output: “yes” if Ay is consistent
“no” otherwise
negation only in front
of concept names
Preprocessing: normalize the ABox /

— transform all concept descriptions in A into negation normal form (NNF)

— ensure that the ABox is non-empty

by adding a : T for an arbitrary individual name « if needed

— ensure that every individual name a occurring in the ABox
occurs in a concept assertion by adding a : T if needed

We assume in the following that the

input ABox A is normalized in this sense.

Dresden © Franz Baader

Tableau algorithm more formal description

Application of expansion rules:

e The rules are triggered by the presence of certain assertions in the cur-
rent ABox,

e and extend the ABox by new assertions.
e Deterministic rule: only one option for how to extend the ABox.

e Nondeterministic rule: several options for how to extend the ABox,

where at least one of them must lead to success.

A
-AU-B
A~ B

Dresden © Franz Baader

Tableau algorithm more formal description

Application of expansion rules:

e The rules are triggered by the presence of certain assertions in the cur-
rent ABox,

e and extend the ABox by new assertion.
e Deterministic rule: only one option for how to extend the ABox.

e Nondeterministic rule: several options for how to extend the ABox,

where at least one of them must lead to success.

— Nondeterministic algorithm: always “guesses” the “right” option.

— Deterministic realization: try options consecutively and

backtrack in case of failure.

Dresden © Franz Baader

Expansion rules one for every constructor (except for negation)

Dresden

The IM-rule
Condition: A contains a :(C' 1 D), but not both a: C and a : D
Action: A — AU{a:C a:D}
The L-rule
Condition: A contains a :(C'LJ D), but neither a: C' nor a: D
Action: A — AU{a: X} forsome X € {C, D}
The J-rule
Condition: A contains a :(3r.C'), but there is no b with {(a,b):r,0:C} C A
Action: A — AU{(a,d):r,d:C} where d is new in A
The V-rule
Condition: A contains a :(Vr.C') and (a,b): 7, butnot b: C
Action: A — AU{b:C}

© Franz Baader

Tableau algorithm How does it work?

deterministic rule

nondeterministic rule

/ N\

complete ABoxes

Return “consistent” iff one of these complete ABoxes is clash-free.

Dresden © Franz Baader

Tableau algorithm more formally

Definition 4.1 (Complete and clash-free ABox)

e An ABox A contains a clash if

{a:Cia:=C} C A

for some individual name a, and for some concept C'.

e A is complete if it contains a clash, or

if none of the expansion rules is applicable.

Dresden

© Franz Baader

Tableau algorithm more formally

The procedure exp:

e takes as input a normalised and clash-free ALC ABox A, a rule R and
an assertion or pair of assertions « such that R is applicable to « in A;

e it returns a set exp(.A, R, o) containing each of the ABoxes that can
result from applying R to « in A.

Examples:

exp({a:—D,a:C U D}, U-rule,a:C U D)

exp({b:—D,a:¥r.D,(a,b):r},V-rule, (a:Vr.D, (a,b):r))

Dresden © Franz Baader

Algorithm consistent() Definition 4.2
Input: a normalised ALC ABox A

if expand(.A) # () then

return “consistent” deterministic version of
else .

return “inconsistent” the tableau algorithm
Algorithm expand()

Input: a normalised ALC ABox A

if A is not complete then
select a rule R that is applicable to A and an assertion
or pair of assertions « in A to which R is applicable
if there is A" € exp(A, R, a) with expand(.A’) # () then
return expand(.A’)
else
return ()
else
if A contains a clash then
return ()
else

return A

Dresden © Franz Baader

‘ Tableau algorithm Iexample

Aer ={a: AN 3s.F, (a,b):s
a:Vs.(~F U=B), (a,c):r
b: B, C: CI_IEIS D}

Dresden © Franz Baader

Expansion rules one for every constructor (except for negation)

Dresden

The IM-rule
Condition: A contains a :(C' 1 D), but not both a: C and a : D
Action: A — AU{a:C a:D}
The L-rule
Condition: A contains a :(C'LJ D), but neither a: C' nor a: D
Action: A — AU{a: X} forsome X € {C, D}
The J-rule
Condition: A contains a :(3r.C'), but there is no b with {(a,b):r,0:C} C A
Action: A — AU{(a,d):r,d:C} where d is new in A
The V-rule
Condition: A contains a :(Vr.C') and (a,b): 7, butnot b: C
Action: A — AU{b:C}

© Franz Baader

Trees and forests

In an ABox generated by the algorithm, the individuals generated by

the J-rule form a tree whose root is an individual from the input ABox.

tree of new

individuals

Input

tree of new

individuals

Dresden © Franz Baader

Trees and forests

In an ABox generated by the algorithm, the individuals generated by

the J-rule form a tree whose root is an individual from the input ABox.

e Root individual: individual occurring in the input ABox
e Tree individual: individual generated by the application of the J-rule

e If the J-rule adds a tree individual b and a role assertion (a, b) : 7,

then b is a (r-) successor of a and «a is a predecessor of b

e We use ancestor and and descendant for the transitive closure

of predecessor and successor, respectively

Note: root individuals may have successors and hence descendants,

but they have no predecessor or ancestors.

Dresden © Franz Baader

Tableau algorithm

Why is it a decision procedure for consistency?

We need to show:

Termination:
consistent(.A) terminates for all normalised .ALC ABoxes A

Soundness:
if consistent(.A) returns “consistent”, then A is consistent

Completeness:
if A is consistent, then consistent(.4) returns “consistent”

Dresden © Franz Baader

Dresden

Termination auxiliary definitions and results

Extend the definition of subconcept to ABoxes and to knowledge bases:

sub(A) = U sub(C)

a:CeA
and for K = (7, A),

sub(C) = sub(7") Usub(A).

Set of concepts occurring in a concept assertion:

cony(a) ={C |a:C € A}.

Lemma 4.3

For each ALC ABox A, we have that |sub(A)| <>~ . size(C).

linear in the size of A

© Franz Baader

Termination

Lemma 4.4 (Termination)

For each normalized ALC ABox A, consistent(.A) terminates.

Proof: blackboard

Dresden © Franz Baader

Soundness

Lemma 4.5 (Soundness)

If consistent(.A) returns “consistent”, then A is consistent.

Proof. Let A’ be the set returned by expand(.A).

Since the algorithm returns “consistent”, A’ is a complete and clash-free
ABox.

We use A’ to define an interpretation Z and show that it is a model of A’.

A = {a|a:Ce A}

o’ = afor each individual name a occurring in A’
AY = {a| A€ conyla)} for each concept name A in sub(.A’)
= {(a,b) | (a,b):r € A’} for each role r occurring in A’

Since the expansion rules never delete assertions, we have A C A/,
so 7 is also a model of A.

Dresden © Franz Baader

Soundness proof continued

A = {a|a:Ce A}

a’ = a for each individual name a occurring in A’
AT = {a| A€ conyla)} for each concept name A in sub(A’)
= {(a,b) | (a,b):r € A’} for each role r occurring in A’

The interpretation Z it is a model of A’

Proof: blackboard

Dresden © Franz Baader

Completeness

Lemma 4.6 (Completeness)

If A is consistent, then consistent(.A) returns “consistent”.

Proof. Let A be consistent, and consider a model Z = (A%, .7) of A.

Since A is consistent, it cannot contain a clash.

Thus, if A is complete, then expand simply returns A and
consistent(.A) returns “consistent”.

If A is not complete, then expand calls itself recursively until A is complete;
each call selects a rule and applies it.

It is thus sufficient to show that rule application preserves consistency.

Proof: blackboard

Dresden © Franz Baader

Tableau algorithm

Why is it a decision procedure for consistency?

We have shown:

Termination:
consistent(.A) terminates for all normalised ALC ABoxes A

Soundness:
if consistent(.A) returns “consistent”, then A is consistent

Completeness:
if A is consistent, then consistent(.4) returns “consistent”

Theorem 4.7
The tableau algorithm presented in Definition 4.2 is a decision procedure
for the consistency of ALC ABoxes.

Dresden © Franz Baader

Tableau algorithm What is its complexity?

We will see in Chapter 5 that the complexity of the ALC ABox consistency
problem is PSPACE-complete.

However, the tableau algorithm as described until now needs exponential time
and space for two reasons: "
0

e Due to the nondeterministic Ll-rule, C ..
deterministic rule

exponentially many complete ABoxes v

may be generated.

nondeterministic rule

/ N\

complete ABoxes

Dresden © Franz Baader

Dresden

Tableau algorithm

What is its complexity?

We will see in Chapter 5 that the complexity of the ALC ABox consistency

problem is PSPACE-complete.

However, the tableau algorithm as described until now needs exponential time

and space for two reasons:

e Due to the nondeterministic Ll-rule,
exponentially many complete ABoxes
may be generated.

e Due to the interaction of V- and 4,
complete ABoxes may be
exponentially large.

The call consistent({C),(a)}) generates
a single complete ABox of size
exponential in n.

Cis1

= dr.AMNdr.B
= dr.AnNdr.BNOVr.C;

size of C), is

linear in n

© Franz Baader

Tableau algorithm What is its complexity?

The tableau algorithm can be modified such that it uses only polynomial
space:

e Due to the nondeterministic LI-rule, exponentially many complete ABoxes
may be generated.

— use a nondeterministic algorithm, which always chooses the correct
alternative (if possible);

— thus only one complete ABox is generated;

— use Savitch’s theorem, which says that PSpace = NPSpace.

Dresden © Franz Baader

Tableau algorithm What is its complexity?

The tableau algorithm can be modified such that it uses only polynomial
space:

e Due to the nondeterministic LI-rule, exponentially many complete ABoxes
may be generated.

e Due to the interaction of V- and 4, complete ABoxes may be
exponentially large. Idea:

generate/explore the tree in a depth-first manner

while keeping only one path in memory

/

Dresden © Franz Baader

Tableau algorithm w.r.t. acyclic TBoxes

In principle, consistency of ABoxes w.r.t. acyclic TBoxes can be reduced to
consistency of ABoxes without TBox by unfolding.

Problem: unfolding of an acyclic TBox may result in an exponential blow-up.

Idea: unfolding only “on demand” (lazy unfolding)

The =;-rule

Condition: a:A€ A, A=Ce&T,anda:C & A
Action: A — AU{a:C}

The =5-rule
) ° _.lc

Condition: a:"A€ A, A=C e T,anda:-C & A Negation normal form

Action: A — AU {a:-C} of =C'

Termination, soundness, and completeness can be shown similarly to the case
without TBox (Exercise).

Dresden © Franz Baader

Tableau algorithm w.r.t. general TBoxes

Preprocessing: also normalize the TBox

— transform all GCIs in 7 into the form T C £

T satisfies C' = D iff 7 satisfies T = D LI —=(C'

— transform the right-hand sides £/ of GCIs T C E in T into NNF

We assume in the following that the

input TBox 7 is normalized in this sense.

Dresden © Franz Baader

Dresden

Tableau algorithm

w.r.t. general TBoxes

Add a new expansion rule that takes the semantics of normalized GClIs into

account:

The C-rule

Condition:|a:C A, TCDeT,a:D&A
Action: A — AUA{a:D}

Note: since the input ABox is normalized,

all individuals occur in a concept assertion.

© Franz Baader

Tableau algorithm w.r.t. general TBoxes

Add a new expansion rule that takes the semantics of normalized GClIs into
account:

The C-rule

Condition: a:C € A, TCDeT,a:D&A
Action: A — AUA{a:D}

Soundness and completeness of the tableau algorithm extended with this rule
is easy to show.

Termination? Need not hold!

Example: ({A C 3r.A}, {a:A})

Dresden © Franz Baader

Tableau algorithm w.r.t. general TBoxes

How can we regain termination.

Definition 4.8 (ALC blocking)

An individual name b in an ALC ABox A is blocked by
an individual name a if

Only tree individuals
can be blocked.

e (is an ancestor of b and <

o cony(a) D cony(b).

An individual name b is blocked in A if

All descendants

of a blocked individual
e if one or more of its ancestors is blocked in . A. €<— are also blocked.

e it is blocked by some individual name a, or

When it is clear from the context, we may not mention the ABox explicitly;

e.g., we may simply say that b is blocked.

Dresden © Franz Baader

Tableau algorithm w.r.t. general TBoxes

The tableau algorithm for ALC knowledge base consistency uses
e the [-rule, the Li-rule, the V-rule without changes,
e the new L -rule,

e the following modified J-rule:

The modified J-rule

Condition: A contains a :(3r.C'), but there is no b with {(a,b):r,0:C} C A
and a 1s not blocked

Action: A — AU{(a,d):r,d:C} where d is new in A

Dresden © Franz Baader

Algorithm consistent()
Input: a normalised ALC KB (7 ,.A)
if expand (7, A) # () then

return “consistent”
else
return “inconsistent”

Detinition 4.9

deterministic version of
the tableau algorithm

for KB consistency

Algorithm expand()
Input: a normalised ALC KB (7 ,.A)
if A is not complete then

return expand(7, A')
else
return ()
else
if A contains a clash then
return ()
else

return A

select a rule R that is applicable to A and an assertion
or pair of assertions « in A to which R is applicable
if there is A’ € exp(A, R,) with expand(7T, A’) # () then

Dresden

© Franz Baader

Termination

Lemma 4.10 (Termination)

For each normalized ALC KB IC, consistent(K) terminates.

Proof: blackboard

Dresden © Franz Baader

Soundness

Lemma 4.11 (Soundness)

If consistent(/C) returns “consistent”, then K is consistent.

Proof. Let A’ be the set returned by expand(K).

We use A’ to construct a suitable model Z = (AZ, 1) of K in two steps:

e Construct a new ABox A” that contains
— those axioms in A’ that do not involve blocked individual names

— new “loop-back” role assertions:
4 T/> b blocks b
"}
|

Dresden

© Franz Baader

Soundness

Lemma 4.11 (Soundness)

If consistent(/C) returns “consistent”, then K is consistent.

Proof. Let A’ be the set returned by expand(K).

We use A’ to construct a suitable model Z = (AZ, 1) of K in two steps:

e Construct a new ABox A” that contains
— those axioms in A’ that do not involve blocked individual names

— new “loop-back” role assertions:

e Use A" to construct a model of /C.

Dresden

© Franz Baader

Soundness

e Construct a new ABox A” that contains
— those axioms in A’ that do not involve blocked individual names

— new “loop-back” role assertions:

A"={a:C|a:C € A and a is not blocked } U
{(a,b):r | (a,b):r € A"and b is not blocked } U
{(a,V):7| (a,b):r € A, ais not blocked and b is blocked by &'}

CLT/> b blocks b

!
b

Dresden © Franz Baader

Soundness

e Construct a new ABox A” that contains
— those axioms in A’ that do not involve blocked individual names

— new “loop-back” role assertions:

A"={a:C|a:C € A" and a is not blocked } U
{(a,b):r | (a,b):r € A"and b is not blocked } U
{(a,V):7r| (a,b):r € A, ais not blocked and b is blocked by b’}

The following holds:

e A C A” and none of the individual names occurring in A" is blocked

e conyr(a) = con(a) for all individuals a occurring in A"

e Since A’ is clash-free, and complete, A" is also clash-free and complete

Dresden © Franz Baader

Soundness

e Use A" to construct a model of /C.

We construct an interpretation Z from A" exactly as in the proof of Lemma 4.5:

AT = {a| ais an individual name occurring in A"}

o’ = a for each individual name @ occurring in A”

AT = {a| A€ cony(a)} foreach concept name A occurring in A"
rr = {(a,b) | (a,b):r € A"} foreach role r occurring in A"

e 7 is a model of A” and hence of A

e 7 isamodel of T

Proof: blackboard

Dresden © Franz Baader

Completeness

Lemma 4.12 (Completeness)

If /C is consistent, then consistent(KXC) returns “consistent”.

Proof. It only remains to show that the L_-rule preserves KB consistency.

Blackboard

Theorem 4.13

The tableau algorithm presented in Definition 4.9 is a decision procedure
for the consistency of ALC knowledge bases

Dresden © Franz Baader

Completeness

Lemma 4.12 (Completeness)

If /C is consistent, then consistent(KXC) returns “consistent”.

Proof. It only remains to show that the L_-rule preserves KB consistency.

Blackboard

Theorem 4.13

The tableau algorithm presented in Definition 4.9 is a decision procedure
for the consistency of ALC knowledge bases

Dresden © Franz Baader

Adding number restrictions

Number restrictions: (>mn7), (< nr) with semantics
(=nr)t = {deAt|#{e|(de)er'} >n}
(<nryt = {de AT |#{ec]|(d,e)ert} <n}
Negation normal form:

“(>n+1lr) ~ (<nr)
—(>0r) ~ L
—(<nr) ~ (>Zn+1r)

Extension of algorithm:

e new rules: >-rule and <-rule

e new assertions: equality and inequality assertions of the form

x =y, x # y with obvious semantics 7 = y* and 27 # y~.

e new clash these assertions are

viewed as symmetric

Dresden

© Franz Baader

Adding number restrictions the tableau rules

The >-rule

Condition: A contains a :(>n 1), but there are no distinct by, . . ., b, with

{(a,b):7,...,(a,b,):r} C A

Action: A — AU{(a,dy):r,...,(a,dy):r}U{d; #d; |1 <i<j<n}
where d1, . . ., d, are new individual names

The <-rule

Condition: A contains a :(<nr), and there are distinct by, . . ., b, with

{(a,bo):7,...,(a,b,):7)} CA
Action: A— A[b] —> bl} U {bl — b]}

1

b; replaced by b;

Dresden © Franz Baader

Adding number restrictions the tableau rules

The >-rule

Condition: A contains a :(>n 1), but there are no distinct by, . . ., b, with

{(a,b):7,...,(a,b,):r} C A

Action: A — AU{(a,dy):r,...,(a,dy):r}U{d; #d; |1 <i<j<n}
where d1, . . ., d, are new individual names

The <-rule

Condition: A contains a :(<nr), and there are distinct by, . . ., b, with

{(a,bo):7,...,(a,b,):7)} CA
Action: A— A[b] —> bl} U {bl — b]}

for 7 # j such that, if b; is a root individual, then so is b;.

Dresden © Franz Baader

New clash condition due to inequality assertions

An ABox A contains a clash if
{a:C,a:=C} C Aor {a#a} C A

for some individual name a, and for some concept C'.

Prevents generate and identify loops:

(>27), (<1r) (>2r), (< 17)
O

r

dy # dsy dy # dy Clash!

dy = dy And thus no more
rules are applicable.

Dresden © Franz Baader

Termination need not hold even without GClIs

r
5 P, (<1r.P), Jr.P, ¥Yr.3ar.P r

r a P, (<1r.P), 3Ir.P, Vrar.P
0 P 3.p replace y by a X -

r

(z) P
(=) p

How can we solve this problem?

e In the example, the use of blocking would prevent non-termination:

1y 1s blocked by a and thus z would not be generated.

e Does blocking ensure termination in general? No!

Dresden © Franz Baader

- - d t hold if
Termination oo OO EER
blocking as in Definition 4.8 is used

(<1r), Ir.P, Yrar.Q T (<1r), Ir.Q, Vr.ir.P

Dresden © Franz Baader

does not hold even if

Termination
blocking as in Definition 4.8 is used
(<1r), Ir.P, VrIr.Q r lr), Ir.Q, VrIr.P
O)
r
r
\ “\e{%e

rQ P @

]
Q (@)

Note: x is not blocked! Note: y is not blocked!

P

v
O——O—0
— ([)e——— ()
VAN
O
LLI
~
v

e (does not satisfy superset condition.

e [is not an ancestor.

Dresden © Franz Baader

does not hold even if

Termination
blocking as in Definition 4.8 is used
(<1r), Ir.P, VrIr.Q r P, (<1r), Ir.Q, Vrar.P
>
(@, @
r r
r
|

Dresden © Franz Baader

does not hold even if

Termination
blocking as in Definition 4.8 is used
Q, (L1r), Ir.P, Yr.3r.Q . P, (<1r), Ir.Q, Vr.3r.P
>
O) @
r r r

@P Q@

This looks almost like an ABox we have encountered before,
but now a : () and b : PP have been added.

We can now use the same strategy as before to

reproduce the present ABox up to renaming of tree individuals.

Dresden © Franz Baader

does not hold even if

Termination
blocking as in Definition 4.8 is used
Q, (<1r), Ir.P, Vrar.Q r P, (<1r), Ir.Q, Vrar.P
>
O) @
T r r
“\e{%e

3Q (y) P 3p Q)

Q (") @D P

Dresden © Franz Baader

- - d t hold if
Termination oo OO EER
blocking as in Definition 4.8 is used

Q, (L1r), Ir.P, Yr.3r.Q . P, (<1r), Ir.Q, Vr.3r.P
>
(@ @
T l r
r
A EN IO

merge
r

@P

Dresden © Franz Baader

- - d t hold if
Termination oo OO EER
blocking as in Definition 4.8 is used

Q, (L1r), Ir.P, Yr.3r.Q . P, (<1r), Ir.Q, Vr.3r.P

) O

@) r @CJD

Up to the names of the tree individuals, this is an ABox we have reached
already in a previous stage of the computation.

Thus, the algorithm has run into a cycle,

which shows that it does not terminate.

Dresden © Franz Baader

‘ Termination I How can it be regained?

The termination problem stems from the fact that an individual
e not only obtains successors by applications of the 3- and >-rule,

e but may also inherit successors from individuals that are merged into it.

(OBNO) ‘@

(=)

‘oei%e

o

@—@K

O—©—

\
i
@

Dresden © Franz Baader

Termination How can it be regained?

The termination problem stems from the fact that an individual

e not only obtains successors by applications of the 3- and >-rule,

e but may also inherit successors from individuals that are merged into it.
To avoid this problem, we remove the descendants of an individual before it
1s merged into another one:

prune(A,b;) removes all the decendants of b; from the ABox .A.

\only tree individuals are removed

The <-rule with pruning

Condition: A contains a :(<nr), and there are distinct by, . . . , b, with

{(a,bo):r,...,(a,b,):1)} CA
Action: A — prune(A,b;)|b; — bj] U{b; =b;}

for 7 # j such that, if b; is a root individual, then so is b;.

Dresden © Franz Baader

Tableau algorithm

Dresden

The tableau algorithm for ALCN knowledge base consistency uses

e the -rule, the Ll-rule, the V-rule,

e the following modified C-rule:

The modified L -rule

Condition: a:C € A

or (b,a):re AL[TCDeT,a:DgA

Action: A — AU{a:D}

v
The >-rule introduces individuals
without concept assertion!

© Franz Baader

Tableau algorithm

The tableau algorithm for ALCN knowledge base consistency uses
e the -rule, the Ll-rule, the V-rule,
e the modified L -rule,
e the modified J-rule,
e the <-rule with pruning,

e the following modified >-rule:

The modified >-rule

Condition: A contains a :(> n 1), but there are no distinct by, . . . , b, with
{(a,by):7r,...,(a,b,) :r} C A, and a is not blocked

Action: A — AU{(a,dy):7,...,(a,d,):r}U{di £ d; |1 <i<j<n}

where dy, . . ., d,, are new individual names

Dresden © Franz Baader

Termination How can it be shown in a formal way?

A— A A’ is obtained from A by application of an expansion rule

A partial order (M, >) is called well-founded if there is

no infinite descending chain

mo = M1 > Mo > M3 > ...

Termination obviously holds if we can find a mapping ; from ABoxes into a
well-founded partial order (M, =) such that

A — A" implies u(A) = u(A)

Proof.

A=A = A= A3 — ... How do we get an appropriate

implies well-founded partial order >?
p(A) = p(Ar) = p(Az) = p(As) - ...

Dresden © Franz Baader

Well-founded orders More details in

Term Rewriting
;- and All That

(N, >) is obviously well-founded. ——

: , : Tobias Nipkow
New well-founded orders can be obtained by using the !

lexicographic product and the multiset order.

Given two partial orders (A, >,) and (B, >p), the lexicographic product
> ixp on A X B is defined by

(z,9y) >axp (@,y) & (x>)V(e=2"Ny>p1).

Theorem (Theorem 2.4.2 in TRAT)

The lexicographic product of two well-founded partial orders is again

a well-founded partial order.

Dresden © Franz Baader

Multisets

Multisets are “sets with repeated elements™: {a,a,b}, {a,b,b} {a,b}

Definition (Definition 2.5.1 in TRAT)

1. A multiset M over a set A is a function M : A — N.

2. M is finite if there are only finitely many x such that M (x) > 0.
M (A) denotes the set of all finite multisets over A.

e r ¢ M & M(x)>D0.
e MM CN & Vre A M(x) < N(x),
e (MUN)(x):=M(zx)+ N(x).

e (M — N)(x):=M(x) = N(x) m;n:—{ gl_n gt}?:erZvi?e

Dresden © Franz Baader

The multiset order

Definition (Definition 2.5.3 in TRAT)

Given a partial order > on a set A, we define the corresponding
multiset order >,,,,; on M(A) as follows:

M >, N iff there exist X, Y € M(A) such that
1.0 # X C M and
2.N=(M—X)UY and
3.VyeY. de e X.x > uy.

N is obtained from M by removing a non-empty subset X and

adding only elements that are smaller than some element in X.

{57 37 17 1} > mul {47 37 37 1} > mul {47 37 27 27 27 27 27 1} > mul {47 37 27 2}

Dresden © Franz Baader

The multiset order

Definition (Definition 2.5.3 in TRAT)

Given a partial order > on a set A, we define the corresponding
multiset order >,,,,; on M(A) as follows:

M >, N iff there exist X, Y € M(A) such that
1.0 # X C M and
2.N=(M—X)UY and
3.VyeY. de e X.x > uy.

Theorem (Theorem 2.5.5 in TRAT)

If > is a well-founded partial order on A, then
>l is @ well-found partial order on M(A).

Dresden © Franz Baader

The mapplng from ABoxes into a well-founded partial order

Consider an ABox A obtained during a run of the algorithm on input (7y, Ap).

The depth of an indivdual in A is defined as follows:

d4(a) =0 if a is a root individual

d4(x) = n if z is a tree individual tree of new

with distance n from the root individuals

Input

tree of new

individuals

Dresden © Franz Baader

The mapplng from ABoxes into a well-founded partial order

Consider an ABox A obtained during a run of the algorithm on input (7y, Ap).
The depth of an indivdual in A is defined as follows:
d4(a) = 0 if a is a root individual

d(x) = n if z is a tree individual

with distance n from the root

Lemma 4.14
Let m = size(7y, Ap) and m = 2",

e The use of blocking ensures that d 4(x) < m for all individuals .

e |cony(z)| < m for all individuals .

Proof.

See proofs of Lemma 4.4 and Lemma 4.10.

Dresden © Franz Baader

The mapplng from ABoxes into a well-founded partial order

Consider an ABox A obtained during a run of the algorithm on input (7y, Ap).
Each individual = occurring in a concept and role assertion in A is mapped to
a triple of natural numbers /i 4(x) := (ny, no, n3):

ny = m — d(x) natural numbers

o due to Lemma 4.14
ny = m — |cony(z)]

ng ;= #{a:3Ir.C € A| thereis no b with {(a,b):r,0:C} C A} +
#{a:(=nr) € A| thereareno by, ..., b, with
{(a,by):r, ... (a,b,):r} U{bi #0; |1 <i<j<n}CA}

Order on triples: lexicographic product of order > on natural numbers

The ABox A is mapped to the multiset z1(.A) of these triples.

Order > on mulitsets: multiset extension of order on triples

Dresden © Franz Baader

Termination

ny = m — |cony(z)]

ng :=#{a:3Ir.C € A| thereis no b with {(a,b):r,0:C} C A} +
#{a:(=nr) € A| thereareno by,...,b, with
{(a,b1):ry ..o (a,by):r} UL #b; |1 <i<j<n}CA}

Lemma4.15

A — A’ and A’ clash-free implies p(A) = pu(A)

Proof: blackboard

Dresden © Franz Baader

Termination

ny = m — |cony(z)]

ng :=#{a:3Ir.C € A| thereis no b with {(a,b):r,0:C} C A} +
#{a:(=nr) € A| there are no by, ..., b, with
{(a,b1):ry ..o (a,by):r} UL #b; |1 <i<j<n}CA}

Lemma4.15

A — A’ and A’ clash-free implies p(A) = pu(A)

Lemma 4.16 (Termination)

For each normalized ALCN KB [, consistent(K) terminates.

Dresden © Franz Baader

Soundness

Soundness can be shown similarly to the proof of Lemma 4.11.

However, the construction of A" needs to be modified in order to
obtain a complete and clash-free ABox:

A" is not complete!

Idea: create copies of blocking individual
r#ycA for each individual it blocks.

x and y blocked by z

Dresden © Franz Baader

Soundness

Soundness can be shown similarly to the proof of Lemma 4.11.

However, the construction of A" needs to be modified in order to
obtain a complete and clash-free ABox:

A" is complete!

x£ye A Note: in general we may need the

equality assertions in A’

x and y blocked by z
to turn the model of A” into a model of A.

Dresden © Franz Baader

Completeness

It only remains to show that the <-rule and the >-rule

preserve KB consistency.

Exercise!

Dresden © Franz Baader

