Chapter 5 Complexity

Instead of analyzing the complexity of a particular algorithm, we here analyze
the complexity of the resoning problem itself:

How efficient can we expect any reasoning algorithm for a given problem

to be, even on very difficult (“worst case”) inputs.

We will concentrate on the basic reasoning problems satisfiability and
subsumption for the sake of simplicity.

All results established in this chapter also apply to KB consistency.

Complexity classes:

PTime C NP C PSpace C ExpTime C NExpTime Explain?

Hard for class C: every problem in C can be reduced to it in polynomial time

Complete for class C: hard for C and contained in C.

Dresden © Franz Baader

5.1 Concept satisfiability § in Acc

First, we show that concept satisfiability in ALC

e with acyclic TBoxes is in PSpace; and thus PSpace-complete

e without TBoxes is PSpace-hard; in both cases.

We can concentrate on the complexity of satisfiability since it immediately
yields the complexity of subsumption:

e mutual polynomial-time reductions between satisfiability and
non-subsumption (Theorem 2.19);

e for deterministic complexity classes (such as PSpace)
subsumption thus has the same complexity as satisfiability.

Note: for nondeterministic complexity classes (NP and NExpTime),
subsumption would have the complementary complexity to satisfiability

(coNP and coNExpTime).

Dresden © Franz Baader

The complexity upper bound | case of acyclic TBox

Dresden

Without loss of generality we assume that the concept tested for satisfiability
is a concept name:

C'is satisfiable w.r.t. a TBox T iff A is satisfiable w.r.t. T U {A = C'},

where A is a fresh concept name

Negation normal form (NNF):

An acyclic TBox 7 is in NNF if negation is applied only to primitive concept
names in 7, but neither to defined concept names nor to compound concepts.

S In the expanded version of T,
all concept descriptions are in NNF.

Proposition 5.1 (NNF)

There is a polynomial time transformation of each acyclic TBox 7 into an
acyclic TBox 7 in NNF such that for all concept names A occurring in 7, A
is satisfiable w.r.t. 7 iff A is satisfiable w.r.t. T".

Proof: blackboard.

© Franz Baader

The complexity upper bound | case of acyclic TBox

Dresden

Simple TBox:

An acyclic TBox 7T is simple if all concept definitions are of the form
A=P A=-P, A= BiNBy, A= BiUBy, A=3r.B;, or A=Vr.B;

where P is a primitive concept and B, Bs are defined concept names.

Note: every simple TBox is in NNF.

Lemma 5.2 (simple TBox)

Let Aj be a concept name. There is a polynomial time transformation of each
acyclic TBox 7T into a simple TBox 7 such that Ay is satisfiable w.r.t. T iff
Ay is satisfiable w.r.t. 7.

Proof: blackboard.

The lemma shows that it is sufficient to design an algorithm that tests
satisfiability of a concept name w.r.t. a simple TBox.

© Franz Baader

The complexity upper bound | case of acyclic TBox

Dresden

Definition 5.3 (type)

Let 7 be a simple TBox and Def(7) the set of defined concept names in 7.
A type for T is a set 7 C Def(7) that satisfies the following conditions:

1. Ac 7implies B¢ 7,if A= Pand B=—-PinT;
2. Actimplies Betand B' e 1,ift A= BNB €T,
3. Ac timplies Bertor B e r,ift A=BUB €.

e Note the similarity with the S-types of Definition 3.12.

The restriction to defined concepts rather than subconcepts is possible
because the TBox is simple.

e There is also a similarity with the tableau algorithm for ALC.

Conditions (i1) and (ii1) resemble the - and the LI-rule and Condition (1)
resembles the clash condition.

© Franz Baader

The complexity upper bound | case of acyclic TBox

The satisfiability algorithm tries to construct a tree models whose depth
is bounded by the role depth of the input concept name.

Intuitively, this is the nesting depth of existential and universal restrictions
in the unfolded version of the concept name.

Formally, the role depth of a defined concept name A is defined as follows:

o fA=(—)P e T, thenrd(A) = 0.
o If A= ByxBy € T with* € {1, U}, thenrd(A) = max(rd(By), rd(Bs)).

e fA=Qr.BeT with@ € {3,V}, thenrd(A) =rd(B) + 1.

Note: this definition is well-founded since 7 is acyclic.

For i > 0, we define Def,(7) = {A € Def(7) | rd(A) < i}.

Dresden © Franz Baader

The satisfiability algorithm case of acyclic TBox

The following algorithm tests satisfiability of a concept name Ay
w.r.t. a simple TBox 7 :

define procedure ALC-Worlds(Ay, T)
i = rd(Ap) Corresponds to
guess a set 7 C Def;(7T) with Ay € 7 one application of J-rule
recurse(7, 7, T) and all possible applications of V-rule

define procedure recurse(7, 7, 7)
if 7 is not a type for 7 then return false
if 2 = 0 then return true
forall Ac rwith A=3r.BecT do
S={B}uU{B' |dJA A crtand A =Vr.B' € T}<
guess a set 7 C Def, (7)) with S C 7

if recurse(7,7 — 1,7) = false then return false
return true

Dresden © Franz Baader

The satisfiability algorithm terminates and

runs in PSpace

To see that this algorithm always terminates and needs only polynomial space,
we consider the recursion tree corresponding to the recursive calls of recurse:

A recursion tree is a tuple T = (V, E, (), with
e (V. E) atree whose nodes correspond to the calls of recurse;

e (anode labelling function that assigns with each node v € V' the
arguments ¢(v) = (7,7, 7T) of the recursive call corresponding to v;

e (v,v') € E if the call corresponding to v’ occurred during v.

Termination: depth of recursion tree is bounded by rd(A,) < size(7),

outdegree is bounded by the number of concept definitions in 7.

In PSpace: #entries in recursion stack is bounded by depth of recursion tree,

size of each entry in recursion stack is bounded by size of 7T .

Dresden © Franz Baader

The satisfiability algorithm is sound and

complete

Lemma 5.4

ALC-Worlds(Ay, T) = true iff Ay is satisfiable w.r.t. 7.

Proof: blackboard.

Theorem 5.5

In ALC, concept satisfiability and subsumption w.r.t. acyclic TBoxes
are in PSpace.

Dresden © Franz Baader

The complexity lower bound J case without TBox

To show that concept satisfiability in ALC is PSpace-hard without TBox
e we need to find a problem P that is known to be PSpace-complete,
e and show that P can be reduced to concept satisfiability.
The original PSpace-hardness proof by Schmidt-Schaull and Smolka (1991)

reduced QBF (validity of Quantified Boolean Formulae)
to concept satisfiability in ALC.

We use a different PSpace-complete problem for our reduction
since a similar ExpTime-complete problem can be used to show
ExpTime-hardness for satisfiability w.r.t. a general TBox.

The problem we use is a game played on formulae of propositional logic,

called finite Boolean game (FBG).

Dresden © Franz Baader

Finite Boolean £4IMces a known PSpace-complete problem

A finite Boolean game (FBG) is a triple (i, ['1, I's) with
e (» a formula of propositional logic,

e [} W' apartition of the variables used in ¢ into
two sets of identical cardinality.

The game is played by two players with alternating moves that determine
the truth values of one propositional variable:

e Player 1 controls the variables in ['| and tries to make the formula true;

e Player 2 controls the variables in [’ and tries to make the formula false.

Decision problem: does Player 1 have a winning strategy,

i.e., can Player 1 force a win no matter what Player 2 does?

Dresden © Franz Baader

Winning strategy for a finite Boolean game G = (¢, [', ['5)

Letn = ‘Fl H‘JFQ

cand 'y = {p1,p3, ..., o1} and I'o = {po, py, . .., P }-

Configuration of G: word ¢ € {0, 1}', for some i < n
e game already played ¢ steps;

e /[ith letter of ¢ = truth value chosen for py.

Initial configuration of (G: empty word &

Move: if the current configuration is 7, then a truth value for py; is selected
e by Player 1 if |¢] is even,
e by Player 2 if |¢] is odd.

Dresden © Franz Baader

Winning strategy for a finite Boolean game G = (¢, [', ['5)

Letn = ’Fl H‘Jrz

cand 'y = {p1,ps,...,pn—1fand Iy = {po, p4, ..., D}

A winning strategy for Player 1 in G is a finite node-labelled tree (V, F, ()
of depth n, where

e /[assigns to each node v € V a configuration /(v);

e the root is labelled with the initial configuration;

e if v is anode of depth i < n with ¢ even and ¢(v) =t, Player 1 must choose
then v has one successor v’ with ((v') € {t0,t1}; an appropriate move

e if v isanode of depth 7 < n with i odd and ¢(v) = t, Player 1 must react
then v has two successor v" and v’ with ((v') = 0 to all possible moves
and K(U”) =t1; ofPlayerZ

e if v is a node of depth n and /(v) = ¢, then ¢ satisfies (.

Dresden © Franz Baader

Winning strategy example

Consider the game G = (i, {p1, p3}, {p2, 1}), with
Y = (ﬁpl —>p2) A ((p1 A p2) = (ps V pa)) A (ﬁp2 — (p4s — —p3))

The following is a winning strategy for Player 1 in G"

[10 ' 11
N A
1000 1000 1110 1111

Dresden © Franz Baader

The reduction from FBG to concept satisfiability

G =(p,I'1,T9) polynomial: 4 concept C

Pl 1h : Cg i
ayer 1 has o G 18

winning strategy satisfiable

Idea: winning strategies are the tree models of C;

Role names: we use one role name 7 as edge relation for the tree

Concept names: for each propositional variable p; (1 <17 < n)

a concept name F,

Dresden © Franz Baader

The reduction from FBG to concept satisfiability

(¢ is a conjunction of the following concept descriptions:

e For each node of odd depth 2 (i.e., Player 2 is to move), there are two
successors, one for each possible truth value of p; . ;:

Ol — |_| \V/TZ< HT'_‘Pi+1 [3T.B+1)
ie{1,3,...n—1}

where Vr'.C' denotes the i-fold nesting Vr. - - - Vr.C'.

e For each node of even depth ¢ (i.e., Player 1 is to move), there is one
SUCCESSOr:

Cy = [Vr! 3r T
i€{0,2,....n—2}

Since the generated successor either belongs to F;,; or its negation,
a truth value for p;,; is chosen “automatically™.

Dresden © Franz Baader

The reduction from FBG to concept satisfiability

(¢ is a conjunction of the following concept descriptions:

e Once a truth value 1s chosen, it remains fixed:

Cy= 1 (P = VP (=P = ¥r-P))

1<i<j<n

Recall: C = D abbreviates =C' L D

o At the leafs, the formula ¢ is true:

Cy=Vr".p"

©* denotes the result of converting ¢ into an ALC concept:

pi — D, A — T, VvV — U

Co=0C1M---M0y

Dresden

© Franz Baader

The reduction from FBG to concept satisfiability

Fact:

The size of C', C5, C5 is quadratic in n and the size of ('} is linear in
n plus the size of .

Thus, C can be constructed in time polynomial in the description of G

Lemma 5.6

Player 1 has a winning strategy in G iff C is satisfiable.

Proof: blackboard.

Theorem 5.7

In ALC, concept satisfiability and subsumption without TBoxes
and with acyclic TBoxes are PSpace-complete.

Dresden © Franz Baader

The complexity upper bound | case of general TBox

Dresden

Without loss of generality we restrict the attention to satisfiability of a concept
name A w.r.t. a general TBox 7 in which this name occurs:

C is satisfiable w.r.t. 7 iff Ay is satisfiable w.r.t. T U {4y C C'}

Ay new name

In addition, we can assume that the TBox consists of a single GCI
of the form T C ('t

ITE={CiCDy,...,.C,ED}ifft ZE={TC(=CiUDy)M...M=C,UD,)}

for all interpretations Z

We can also assume without loss of generality that the concept C' in this GCI
is in NNF.

© Franz Baader

The complexity upper bound | case of general TBox

We prove an ExpTime upper bound for satisfiability w.r.t. general ALC TBoxes
using a so-called type elimination algorithm.

Definition 5.8 (type)

Let 7 be a general TBox satisfying the restrictions described above.
A type for T is a set 7 C sub(7) satisfying the following conditions:

(i) A € 7implies =A ¢ 7, forall = A € sub(7T);
() CT1D e mimplies C' € Tand D € 7, forall C 1 D € sub(7T);
(iii) CUD € 7impliesC € Tor D € 7, forall C U D € sub(T);

(iv) Cr e .

Obiviously, the number of types is at most exponential in the size of 7T .

Dresden © Franz Baader

The complexity upper bound | case of general TBox

Type elimination starts with the set of all types, and iteratively removes types
whose existential restrictions are not realized by the current set of types.

Such types are called bad.

Definition 5.9 (bad type)

Let ['be asetof typesand 7 € I,

Then 7 is bad in ' if there exists an J7.C' € 7 such that the set
S={C}tu{D |Vr.D et}

is no subset of any type in .

Dresden © Franz Baader

Type elimination the algorithm

define procedure ALC-Elim(Aj, T)
set [to the set of all types for T
1 =10
repeat
1=1+1
['={rel, 1| Tisnotbadin[; 1}
until[';, =1,
if there is 7 € I'; with Ay € 7 then return true
else return false

Lemma 5.10

ALC-Elim(Ay, T) = true iff Ay is satisfiable w.r.t. 7.

Prooft: blackboard.

Dresden

© Franz Baader

The complexity upper bound

case of general TBox

It remains to show that this algorithm runs in exponential time:
(i) the number of types for 7 is exponential in the size of 7T ;
(11) 1in each execution of the repeat loop, at least one type is eliminated;

(iii)) computing the set ['; inside the repeat loop can be done in time
polynomial in the cardinality of I';_

(thus in time exponential in the size of 7).

Theorem 5.11

In ALC, concept satisfiability and subsumption w.r.t. general TBoxes
are in ExpTime.

Dresden © Franz Baader

The complexity lower bound J case of general TBox

We show ExpTime-hardness by reducing existence of a winning strategy for
infinite Boolean games to satisfiability w.r.t. general TBoxes.

An infinite Boolean game (IBG) is a quadruple (o, 'y, I'y), ¢y with
e (» a formula of propositional logic,
e [} W' apartition of the variables used in ¢ into two sets,

e {(an initial truth value assignment to the variables in .

The game is played by two players with alternating moves in which the
the truth value of a variable controlled by this player can be flipped
or left unchanged:

e Player 1 wins if the formula ever becomes true during the game;

e Player 2 wins if the game runs forever without the formula
ever becoming true.

Dresden © Franz Baader

Winning strategy for an infinite Boolean game G' = (¢, ['1, [y,)

Configuration of G: (,t) with

e | € {1,2} determining the player to move next;

e t atruth assignment for the variables in ['; & I's.
Initial configuration of G: (1, tg)

A truth assignment ¢’ is a p-variation of a truth assignment ¢, for p € I'; U Ty,
o ift/ =1t

e or ¢’ is obtained from ¢ by flipping the truth value of p.

Itis a [';-variation of ¢ if it is a p-variation of ¢ for some p € [';, i € {1, 2}.

Dresden © Franz Baader

Winning strategy for an infinite Boolean game G' = (¢, ['1, [y,)

A winning strategy for Player 2 in G is an infinite node-labelled tree (V, F/, (),
where

e /[assigns to each node v € V a configuration /(v);

e the root is labelled with the initial configuration;

Player 2 must
e if /(v) = (2,1), then v has one successor v' with /(v') = (1,t') choose an
for a ['5-variation ¢’ of ¢. appropriate move
o if /(v) = (1,t), then v has successors vy, . .., v, | with labels felzgf ;j;ﬁus,t
K(UL) = (2, ty) (0 <7 < ’Fl‘) such that to, c ,t|r1| are all possjb]e moves
[';-variations of ¢; of Player 1

e if v is anode with {(v) = (¢, t), then ¢ does not satisfy ¢.

Dresden © Franz Baader

The reduction from IBG to concept satisfiability w.r.t. a general TBox

ALC TBox T and
concept name [

polynomial

G — (907 Fl? F27t0> - >

Player 2 has £ I is satisfiable

winning strategy w.r.t. Ta

Idea: winning strategies are the tree models of w.r.t. T

Role names: we use one role name 7 as edge relation for the tree

Concept names: for each propositional variable p; (1 < ¢ < n) a concept name F,
11,75 to describe whether it is the turn of Player 1 or Player 2

Fy, ..., F, to indicate which variable has been flipped to reach

the current configuration

Dresden © Franz Baader

The reduction from IBG to concept satisfiability w.r.t. a general TBox

We assume ['y = {py,...,pn}tand s = {pyi1, ..., 00}

J¢; consists of the following GCls:

e The initial configuration is as required:

ITC TN W —P. M [] P,

1<i<n, to(p,)=0 1<i<n, to(p;)=1

e If it is the turn of Player I, then there are |I';|+1 successors:

T, C3r(=Fq---1=F,)n [3rF

1<i<m

e If it is the turn of Player 2, then there is one successor:

T, C3Ir(-Fn---n=F)u L 3rF

m<i1<n

e At most one variable is flipped in each move:

TC [1 =(FNE)
1<i<j<n

Dresden

© Franz Baader

The reduction from IBG to concept satisfiability w.r.t. a general TBox

We assume ['y = {py,...,pn}tand s = {pyi1, ..., 00}
J¢; consists of the following GCls:

e Variables that are flipped change their truth value:
TC [((P—Vr(F—=P))N(-P,=Vr.(F,—P)))

1<i<n

e Variables that are not flipped keep their truth value:
TC [1 ((P—=Vr(=F — P))N(~P,—Vr(-F,— -F)))

T 1<i<n

e The players alternate:

T1 E \V/’I“.TQ and T2 E VT.Tl

e The formula ¢ is never satisfied: T L —p*

where " denote the result of converting into an ALC concept.

Dresden © Franz Baader

The reduction from IBG to concept satisfiability w.r.t. a general TBox

It is easy to see that 7 can be constructed in time polynomial in the
description of G.

Lemma 5.12

Player 2 has a winning strategy in G iff [is satisfiable w.r.t 7.

Proof: blackboard.

Theorem 5.13

In ALC, concept satisfiability and subsumption w.r.t. general TBoxes
is ExpTime-complete.

Dresden © Franz Baader

5.2 Concept satisfiability @ ., 4rcor

Inverse roles: if r 1s a role, then ~ denotes its inverse

(r)" = {(e.d) | (d.e) € 7} I

Nominals: {a} for a € I with semantics

{a}t = {a"} O

Using type elimination, it is not hard to show that satisfiability w.r.t.
general TBoxes in ALCOZ remains in ExpTime.

We show that concept satisfiability in ALCOZ is ExpTime-hard
already without TBox.

First, note that the interaction between inverse roles and nominals allows us
to enforce infinite chains of role successors:

Example: C = {a} N Ju.{a} NVu.3r.Ju" {a}.

Dresden © Franz Baader

5.2 Concept satisfiability @ ., 4rcor

possibly cyclic

u

First, note that the interaction between inverse roles and nominals allows us
to enforce infinite chains of role successors:

Example: C = {a} N Ju.{a} NVu.3r.Ju" {a}.

Dresden © Franz Baader

EXpTime-hardness of concept satisfiability in ALCOZL

More generally, the interaction between inverse roles and nominals allows us
to enforce that all elements of the domain are reachable via some role u
from some nominal «a.

GCIs C' C D can then be propagated to all elements of the
domain by adding a value restriction Vu.(—C'LI D) to a.

More precisely, we reduce satisfiability of an ALC concept w.r.t.
an ALC TBox to concept satisfiability in ALCOL:

Given an ALC concept () and an ALC TBox 7T, we define

Dy = Cyn{a}nIua} MVu.(CE|;|€T -C'U D) NVu.(ng Vri.Ju" {a}),

where r(, ..., r;_1 are all role names occurring in C' and T
and their inverses, and v is a fresh role name.

Dresden © Franz Baader

EXpTime-hardness of concept satisfiability in ALCOZL

Given an ALC concept Cy and an ALC TBox 7T, we define

Dy = Cym{a} N Juda} MVu. (chle’r -C' I D) M Vu.(g Vri.ﬂu‘.{a}),

where 7, . .., r;_1 are all role names occurring in C' and T
and their inverses, and u 1s a fresh role name.

It remains to show that this reduction is correct, 1.e.,
C\ is satisfiable w.r.t. T iff Dy is satisfiable
Proof: blackboard.

Theorem 5.15

In ALCOL, concept satisfiability and subsumption (without TBoxes)

are ExpTime-hard.

Dresden © Franz Baader

5.3 Undecidable extensions § of ALC

Role value maps were available as concept constructors already in the
first DL system, KL-ONE.

Syntax: (r{o---ory Csj0---0s8),

where |, ..., 7. and s, ..., sy are role names.

Semantics: we define
(7"10' ’ -OTk)I(do) - {dk S AI ‘ Eldla I dk—l : (d'i7 dH—l) € Ty'I for) <1 < k}

and
(rio---or, C sjo---os)f ={d € AT | (ri---r.)*(d) C (s1---s,)%(d)}.

Dresden © Franz Baader

Role value maps example

Consider the following part of a TBox about universities:

Course [dheld-at.University
Lecturer £ dteaches.Course ' Jdemployed-by.University

To express that someone who teaches a course held at a university must be
employed by that specific university, we need role value maps:

T L (teaches o held-at = employed-by).

Though very useful, role value maps are not available in modern DL systems
since they cause undecidability:

e We first show undecidability in the presence of GCls,

e and then strengthen this result by showing that undecidability

already holds without GCls.

Dresden © Franz Baader

Role value maps cause undecidability

To show undecidability we reduce a known undecidable problem
to satisfiability in the extension of ALC with role value maps.

Definition 5.19 (tiling problem)

A tiling problem is a triple P = (T, H, V'), where T is a finite set of tile types
and H,V C T x T represent the horizontal and vertical matching conditions.

A mapping 7 : N X N — T'is a solution for P if forall ¢, 7 > 0, the following
holds:

o if7(i,j) =tand 7(i + 1,j) =1/, then (¢,t') € H;
v o if7(i,j)=tand7(i,j+ 1) =1, then (t,t') € V.

i i1 [

J

Dresden © Franz Baader

v

Role value maps cause undecidability

To show undecidability we reduce a known undecidable problem
to satisfiability in the extension of ALC with role value maps.

Definition 5.19 (tiling problem)

A tiling problem is a triple P = (T, H, V'), where T is a finite set of tile types
and H,V C T x T represent the horizontal and vertical matching conditions.

A mapping 7 : N X N — T'is a solution for P if forall ¢, 7 > 0, the following
holds:

o if7(i,j) =tand 7(i + 1,j) =1/, then (¢,t') € H;
o if 7(i,j) =tand 7(i,7 + 1) =1, then (t,t) € V.

Decision problem

Given a tiling problem P

Question does P have a solution?

Dresden © Franz Baader

1s known to be undecidable.

The reduction

Given a tiling problem P = (T, H, V'), we construct a general TBox 7p
with role value maps such that models of 7p represent solutions to P.

Concept names: foreachtilet € T (1 < ¢ < n)a concept name A;

Role names: 1, and r, for the horizontal and vertical successor relations

The TBox 7p consists of the following GClIs:

(1) Every position has a horizontal and a vertical successor:
TCdr,. TMNdr, T

(i1) Every position is labelled with exactly one tile type:

—l_ E |_| At |—| |_| _|<Af |—| At/)

teT t,t'eT t#t

(111) Adjacent tiles satisfy the matching conditions:

TC U (Anve.A)n U (4 nvr.A)
(tt)eH (tt)eV |

Dresden © Franz Baader

The reduction continued

The TBox 7Tp consists of the following GCls:

(1) Every position has a horizontal and a vertical successor:
TCdr,. TMdr, T
(i1) Every position is labelled with exactly one tile type:

TCcUAn [T —(AM0A))

- teT t €T t#t

(111) Adjacent tiles satisfy the matching conditions:

T E I_l (Af [\V/T17.At/> [l |_| (Af [\V/Ty.At/)

(t,t)eH (t,t)eV
T Ty
Ty T

no connection

Dresden

© Franz Baader

The reduction continued

The TBox 7p consists of the following GClIs:

(1) Every position has a horizontal and a vertical successor:
TCdr,. TMdr, T

(i1) Every position is labelled with exactly one tile type:

TCcUAn [T —(AM0A))

- teT t €T t#t

(111) Adjacent tiles satisfy the matching conditions:

T E I_l (Af [\V/TJ;.At/> [l I_l (At [\V/Ty.At/)

(t.t')eH (t,t)eV

(iv) Every r,r,-successor is also a 7,1 ,-successor and vice versa:

TC (rporyCryory)
T (Ty ory L 10 Ty)

Dresden © Franz Baader

Role value maps cause undecidability

Lemma 5.20 (correctness of the reduction)

T is satisfiable w.r.t. 7p iff P has a solution.

Proof: blackboard.

Theorem 5.21

In the extension of ALC with role value maps, concept satisfiability
and subsumption w.r.t. general TBoxes are undecidable.

Theorem 5.22

In the extension of ALC with role value maps, concept satisfiability
and subsumption (without TBoxes) are undecidable.

Proof: blackboard.

Dresden © Franz Baader

