Chapter 6

The \mathcal{EL} family

The DL \mathcal{EL} has the constructors

- existential restriction: $\exists r.C$;
- conjunction: $C \sqcap D$;
- the top concept: \top.

no value restriction
no disjunction
no negation, no \bot

Every \mathcal{EL} concept is satisfiable w.r.t. any \mathcal{EL} TBox and thus satisfiability is not an interesting problem.

Subsumption in \mathcal{EL} is non-trivial, and cannot be reduced to satisfiability in \mathcal{EL}.

We show that subsumption w.r.t. general TBoxes in \mathcal{EL} can be decided in polynomial time.

Note: for the dual DL \mathcal{FL}_0, which uses $\forall r.C$ in place of $\exists r.C$, subsumption w.r.t. general TBoxes is ExpTime-complete.
6.1 Subsumption in \mathcal{EL} w.r.t. general TBoxes

Without loss of generality we assume that the concepts tested for subsumption are concept names:

Lemma 6.1

Let \mathcal{T} be a general \mathcal{EL} TBox, $C, D \in \mathcal{EL}$ concepts, and A, B concept names not occurring in \mathcal{T} or C, D. Then

$$\mathcal{T} \models C \sqsubseteq D \iff \mathcal{T} \cup \{A \sqsubseteq C, D \sqsubseteq B\} \models A \sqsubseteq B.$$

Proof: blackboard.

In addition, we assume that the TBox \mathcal{T} is in normal form, i.e., all GCIs in \mathcal{T} have one of the following forms:

$$A \sqsubseteq B, \quad A_1 \sqcap A_2 \sqsubseteq B, \quad A \sqsubseteq \exists r.B, \quad \text{or} \quad \exists r.A \sqsubseteq B,$$

where A, A_1, A_2, B are concept names or the top concept \top and r is a role name.
Normalisation of an \mathcal{EL} TBox

One can transform a given TBox into a normalised one by applying the following normalisation rules:

- **NF0** \(\hat{D} \sqsubseteq \hat{E} \rightarrow \hat{D} \sqsubseteq A, \; A \sqsubseteq \hat{E} \)
- **NF1_r** \(C \sqcap \hat{D} \sqsubseteq B \rightarrow \hat{D} \sqsubseteq A, \; C \sqcap A \sqsubseteq B \)
- **NF1_ℓ** \(\hat{D} \sqcap C \sqsubseteq B \rightarrow \hat{D} \sqsubseteq A, \; A \sqcap C \sqsubseteq B \)
- **NF2** \(\exists r. \hat{D} \sqsubseteq B \rightarrow \hat{D} \sqsubseteq A, \; \exists r. A \sqsubseteq B \)
- **NF3** \(B \sqsubseteq \exists r. \hat{D} \rightarrow A \sqsubseteq \hat{D}, \; B \sqsubseteq \exists r. A \)
- **NF4** \(B \sqsubseteq D \sqcap E \rightarrow B \sqsubseteq D, \; B \sqsubseteq E \)

where C, D, E denote arbitrary \mathcal{EL} concepts,
\(\hat{D}, \hat{E} \) denote \mathcal{EL} concepts that are neither concept names nor \top,
B is a concept name, and
A is a new concept name.
Normalisation example

\[
\begin{align*}
\text{NF0} & \quad \hat{D} \sqsubseteq \hat{E} \quad \rightarrow \quad \hat{D} \sqsubseteq A, \quad A \sqsubseteq \hat{E} \\
\text{NF1}_r & \quad C \cap \hat{D} \sqsubseteq B \quad \rightarrow \quad \hat{D} \sqsubseteq A, \quad C \cap A \sqsubseteq B \\
\text{NF1}_\ell & \quad \hat{D} \cap C \sqsubseteq B \quad \rightarrow \quad \hat{D} \sqsubseteq A, \quad A \cap C \sqsubseteq B \\
\text{NF2} & \quad \exists r. \hat{D} \sqsubseteq B \quad \rightarrow \quad \hat{D} \sqsubseteq A, \quad \exists r. A \sqsubseteq B \\
\text{NF3} & \quad B \sqsubseteq \exists r. \hat{D} \quad \rightarrow \quad A \sqsubseteq \hat{D}, \quad B \sqsubseteq \exists r. A \\
\text{NF4} & \quad B \sqsubseteq D \cap E \quad \rightarrow \quad B \sqsubseteq D, \quad B \sqsubseteq E
\end{align*}
\]

\[
\begin{align*}
\exists r. A \cap \exists r. \exists s. A & \sqsubseteq A \cap B \quad \rightsquigarrow_{\text{NF0}} \quad \exists r. A \cap \exists r. \exists s. A \sqsubseteq B_0, \quad B_0 \sqsubseteq A \cap B, \\
\exists r. A \cap \exists r. \exists s. A & \sqsubseteq B_0 \quad \rightsquigarrow_{\text{NF1}_r} \quad \exists r. A \sqsubseteq B_1, \quad B_1 \cap \exists r. \exists s. A \sqsubseteq B_0, \\
B_1 \cap \exists r. \exists s. A & \sqsubseteq B_0 \quad \rightsquigarrow_{\text{NF1}_\ell} \quad \exists r. \exists s. A \sqsubseteq B_2, \quad B_1 \cap B_2 \sqsubseteq B_0, \\
\exists r. \exists s. A & \sqsubseteq B_2 \quad \rightsquigarrow_{\text{NF2}} \quad \exists s. A \sqsubseteq B_3, \quad \exists r. B_3 \sqsubseteq B_2, \\
B_0 \sqsubseteq A \cap B & \quad \rightsquigarrow_{\text{NF4}} \quad B_0 \sqsubseteq A, \quad B_0 \sqsubseteq B.
\end{align*}
\]
Normalisation terminates

Lemma 6.2

Any \mathcal{EL} TBox \mathcal{T} can be transformed into a normalised \mathcal{EL} TBox \mathcal{T}' by a linear number of applications of the normalisation rules.

In addition, the size of the resulting TBox \mathcal{T}' is linear in the size of \mathcal{T}.

Proof: Show that the abnormality degree of a TBox decreases with each rule application
Abnormal occurrence of a concept \widehat{D} within a general $\mathcal{E}\mathcal{L}$ TBox:

(i) \widehat{D} is the left-hand side of a GCI $\widehat{D} \sqsubseteq \widehat{E}$ where \widehat{D}, \widehat{E} are neither concept names nor \top; or

(ii) \widehat{D} is neither concept name nor \top, and this occurrence is under a conjunction or an existential restriction operator; or

(iii) the occurrence of \widehat{D} is under a conjunction operator on the right-hand side of a GCI.

The abnormality degree of a general $\mathcal{E}\mathcal{L}$ TBox is the number of abnormal occurrences of a concept in this TBox:

- the abnormality degree of a TBox is bounded by the size of the TBox,
- a TBox with abnormality degree 0 is normalised.

Proof continued on blackboard.
Normalisation

original TBox \mathcal{T} $\xrightarrow{\text{appropriate semantic relationship}}$ normalised TBox $\mathcal{T'}$

subsumption hierarchy for the concept names occurring in \mathcal{T} yields classification of $\mathcal{T'}$

Note:

\mathcal{T} and $\mathcal{T'}$ are not equivalent in the sense that they have the same models due to the introduction of new concept names by the normalisation rules.

However, $\mathcal{T'}$ is a conservative extension of \mathcal{T}.
Definition 6.3

For a given general \mathcal{EL} TBox \mathcal{T}_0, its signature $\text{sig}(\mathcal{T}_0)$ consists of the concept and role names occurring in the GCIs of \mathcal{T}_0.

Given general \mathcal{EL} TBoxes \mathcal{T}_1 and \mathcal{T}_2, we say that \mathcal{T}_2 is a conservative extension of \mathcal{T}_1 if

- $\text{sig}(\mathcal{T}_1) \subseteq \text{sig}(\mathcal{T}_2)$,

- every model of \mathcal{T}_2 is a model of \mathcal{T}_1, and

- for every model \mathcal{I}_1 of \mathcal{T}_1 there exists a model \mathcal{I}_2 of \mathcal{T}_2 such that \mathcal{I}_1 and \mathcal{I}_2 coincide on $\text{sig}(\mathcal{T}_1) \cup \{\top\}$, i.e.,
 - $\Delta^{\mathcal{I}_1} = \Delta^{\mathcal{I}_2}$,
 - $A^{\mathcal{I}_1} = A^{\mathcal{I}_2}$ for all concept names $A \in \text{sig}(\mathcal{T}_1)$, and
 - $r^{\mathcal{I}_1} = r^{\mathcal{I}_2}$ for all role names $r \in \text{sig}(\mathcal{T}_1)$.
Conservative extension properties

The notion of a conservative extension is transitive:

\(\mathcal{T}_2\) conservative extension of \(\mathcal{T}_1\)

\(\mathcal{T}_3\) conservative extension of \(\mathcal{T}_2\)

\(\mathcal{T}_3\) conservative extension of \(\mathcal{T}_1\)

Lemma 6.4

Let \(\mathcal{T}_1\) and \(\mathcal{T}_2\) be general \(\mathcal{EL}\) TBoxes such that \(\mathcal{T}_2\) is a conservative extension of \(\mathcal{T}_1\), and \(C, D\) \(\mathcal{EL}\) concepts containing only concept and role names from \(\text{sig}(\mathcal{T}_1)\).

Then \(\mathcal{T}_1 \models C \sqsubseteq D\) iff \(\mathcal{T}_2 \models C \sqsubseteq D\).

Proof: blackboard.
Conservative extension

Proposition 6.5

Assume that \mathcal{T}_2 is obtained from \mathcal{T}_1 by applying one of the normalisation rules. Then \mathcal{T}_2 is a conservative extension of \mathcal{T}_1.

Proof: blackboard.

Corollary 6.6

Let \mathcal{T} be a general \mathcal{EL} TBox and \mathcal{T}' the normalised TBox obtained from \mathcal{T} using the normalisation rules, as described in the proof of Lemma 6.2. Then we have

$$\mathcal{T} \models A \sqsubseteq B \iff \mathcal{T}' \models A \sqsubseteq B$$

for all concept names $A, B \in \text{sig}(\mathcal{T})$.

Conservative extension

application

subsumption hierarchy for the concept names occurring in \mathcal{T} yields classification of \mathcal{T}'

Corollary 6.6

Let \mathcal{T} be a general \mathcal{EL} TBox and \mathcal{T}' the normalised TBox obtained from \mathcal{T} using the normalisation rules, as described in the proof of Lemma 6.2.

Then we have

$$\mathcal{T} \models A \sqsubseteq B \iff \mathcal{T}' \models A \sqsubseteq B$$

for all concept names $A, B \in \text{sig}(\mathcal{T})$.

Classification procedure for \mathcal{EL}

We assume that the input TBox \mathcal{T} is a general \mathcal{EL} TBox in normal form. The procedure starts with the GCIs in \mathcal{T} and adds implied GCIs using appropriate inference rules.

All the GCIs generated in this way are of a specific form:

Definition 6.7

A \mathcal{T}-sequent is a GCI of the form

$$A \sqsubseteq B, \quad A_1 \sqcap A_2 \sqsubseteq B, \quad A \sqsubseteq \exists r.B, \quad \text{or} \quad \exists r.A \sqsubseteq B,$$

where A, A_1, A_2, B are concept names in $\text{sig}(\mathcal{T})$ or the top concept \top, and r is a role name in $\text{sig}(\mathcal{T})$.

Note:
- The overall number of \mathcal{T}-sequents is polynomial in the size of \mathcal{T}.
- Every GCI in \mathcal{T} is a \mathcal{T}-sequent.
- A set of \mathcal{T}-sequents consists of GCIs, and thus is a TBox.
Classification rules for \mathcal{EL}

CR1 \[A \sqsubseteq A \]

CR2 \[A \sqsubseteq \top \]

CR3 \[A_1 \sqsubseteq A_2, A_2 \sqsubseteq A_3 \quad \Rightarrow \quad A_1 \sqsubseteq A_3 \]

CR4 \[A \sqsubseteq A_1, A \sqsubseteq A_2, A_1 \sqcap A_2 \sqsubseteq B \quad \Rightarrow \quad A \sqsubseteq B \]

CR5 \[A \sqsubseteq \exists r. A_1, A_1 \sqsubseteq B_1, \exists r. B_1 \sqsubseteq B \quad \Rightarrow \quad A \sqsubseteq B \]

The rules given above are, of course, not concrete rules, but rule schemata.

Concrete instance: replace meta-variables A, A_1, A_2, B, B_1 by concrete \mathcal{EL} concepts and meta-variable r by a concrete role name.

Only instantiations are allowed for which all the GCIs occurring in the rule are \mathcal{T}-sequents!
6.1.2 The Classification Procedure

Let T be a general EL TBox in normal form. We start with the GCIs in T and add implied GCIs using appropriate inference rules. All the GCIs generated in this way are of a specific form.

Definition 6.7. A T-sequent is a GCI of the form $A \sqsubseteq B$, $A_1 \sqcap A_2 \sqsubseteq B$, $A \sqsubseteq \exists r.B$, or $\exists r.A \sqcup B$, where A, A_1, A_2, B are concept names in $\text{sig}(T)$ or \top, and r is a role name in $\text{sig}(T)$.

Obviously, the overall number of T-sequents is polynomial in the size of T, and every GCI in T is a T-sequent. A set of T-sequents consists of GCIs, and thus is a TBox. Inspired by its use in sequent calculi, we employ the name sequent rather than GCI to emphasize the fact that new T-sequents can be derived using inference rules. The prefix T specifies the original TBox and restricts T-sequents to being normalised GCIs containing only concept and role names from $\text{sig}(T)$.

Given the normalised input TBox T, we define the current TBox T' to be initially T, and add new T-sequents to T' by applying the classification rules of Figure 6.2. The rules given in this figure are, of course, not concrete rules, but rule schemata. To build a concrete instance of such a rule schema, the meta-variables A, A_1, A_2, B, B_1 must be replaced by a concrete EL concept and the meta-variable r by a concrete role name. However, it is important to note that only instantiations are allowed for which all the GCIs occurring in the rule are T-sequents.

A rule instance obtained in this way is then to be read as follows: if all the T-sequents above the line occur in the current TBox T', add the T-sequent below the line to T' unless it already belongs to T'.

Classification rules for \mathcal{EL}

<table>
<thead>
<tr>
<th>Rule (CR)</th>
<th>Premise</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR1</td>
<td>$A \sqsubseteq A$</td>
<td>$A \sqsubseteq A$</td>
</tr>
<tr>
<td>CR2</td>
<td>$A \sqsubseteq \top$</td>
<td>$A \sqsubseteq \top$</td>
</tr>
<tr>
<td>CR3</td>
<td>$A_1 \sqsubseteq A_2$, $A_2 \sqsubseteq A_3$</td>
<td>$A_1 \sqsubseteq A_3$</td>
</tr>
<tr>
<td>CR4</td>
<td>$A \sqsubseteq A_1$, $A \sqsubseteq A_2$, $A_1 \sqcap A_2 \sqsubseteq B$</td>
<td>$A \sqsubseteq B$</td>
</tr>
<tr>
<td>CR5</td>
<td>$A \sqsubseteq \exists r.A_1$, $A_1 \sqsubseteq B_1$, $\exists r.B_1 \sqsubseteq B$</td>
<td>$A \sqsubseteq B$</td>
</tr>
</tbody>
</table>
Classification rules for EL

<table>
<thead>
<tr>
<th>Rule</th>
<th>Premises</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR1</td>
<td>$A \sqsubseteq A$</td>
<td></td>
</tr>
<tr>
<td>CR2</td>
<td>$A \sqsubseteq T$</td>
<td></td>
</tr>
<tr>
<td>CR3</td>
<td>$A_1 \sqsubseteq A_2$, $A_2 \sqsubseteq A_3$</td>
<td>$A_1 \sqsubseteq A_3$</td>
</tr>
<tr>
<td>CR4</td>
<td>$A \sqsubseteq A_1$, $A \sqsubseteq A_2$, $A_1 \cap A_2 \sqsubseteq B$</td>
<td>$A \sqsubseteq B$</td>
</tr>
<tr>
<td>CR5</td>
<td>$A \sqsubseteq \exists r. A_1$, $A_1 \sqsubseteq B_1$, $\exists r. B_1 \sqsubseteq B$</td>
<td>$A \sqsubseteq B$</td>
</tr>
</tbody>
</table>

Example 6.8

Let $\mathcal{T}_1 = \{ A \sqsubseteq \exists r. A, \exists r. B \sqsubseteq B_1, \top \sqsubseteq B, A \sqsubseteq B_2, B_1 \cap B_2 \sqsubseteq C \}$. Let $\mathcal{T}_2 = \{ A \sqsubseteq \exists r. A, \exists r. A \sqsubseteq B \}$.

© Franz Baader
Classification rules for \mathcal{EL}

<table>
<thead>
<tr>
<th>Rule</th>
<th>Premise</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR1</td>
<td>$A \sqsubseteq A$</td>
<td>$A \sqsubseteq A$</td>
</tr>
<tr>
<td>CR2</td>
<td>$A \sqsubseteq \top$</td>
<td>$A \sqsubseteq \top$</td>
</tr>
<tr>
<td>CR3</td>
<td>$A_1 \sqsubseteq A_2$, $A_2 \sqsubseteq A_3$</td>
<td>$A_1 \sqsubseteq A_3$</td>
</tr>
<tr>
<td>CR4</td>
<td>$A \sqsubseteq A_1$, $A \sqsubseteq A_2$, $A_1 \sqsubseteq A_2 \sqsubseteq B$</td>
<td>$A \sqsubseteq B$</td>
</tr>
<tr>
<td>CR5</td>
<td>$A \sqsubseteq \exists r.A_1$, $A_1 \sqsubseteq B_1$, $\exists r.B_1 \sqsubseteq B_1$</td>
<td>$A \sqsubseteq B$</td>
</tr>
</tbody>
</table>

Saturation of \mathcal{T}:
- apply the classification rules exhaustively to the input TBox \mathcal{T}
- the resulting TBox \mathcal{T}^* is called the saturated TBox

Lemma 6.9

The saturated TBox \mathcal{T}^* is uniquely determined by \mathcal{T}, and it can be computed by a polynomial number of rule applications.

Proof: blackboard.
Classification procedure for \mathcal{EL}

To show that polynomial-time saturation of \mathcal{EL} TBoxes yields a polynomial-time classification procedure, it is sufficient to prove the following equivalence:

$$\mathcal{T} \models A \sqsubseteq B \text{ iff } A \sqsubseteq B \in \mathcal{T}^*$$

Soundness of the classification procedure (i.e., the if-direction of the equivalence) is an easy consequence of the next lemma:

Lemma 6.10 (Soundness)

If all the GCIs in \mathcal{T}' follow from \mathcal{T} and the \mathcal{T}-sequents above the line of one of the rules belong to \mathcal{T}'

then the \mathcal{T}-sequent below the line also follows from \mathcal{T}

Proof: blackboard.
Classification procedure for \mathcal{L}

$\mathcal{T} \models A \subseteq B$ iff $A \subseteq B \in \mathcal{T}^*$

Completeness: instead of showing the only-if direction of the equivalence directly, we prove its contrapositive:

if $A \subseteq B \not\in \mathcal{T}^*$ then $\mathcal{T} \not\models A \subseteq B$.

For this purpose, we use \mathcal{T}^* to construct a canonical model of \mathcal{T} that

- does not satisfy the GCI $A \subseteq B$
- in case $A \subseteq B \not\in \mathcal{T}^*$.
Definition 6.11

Let \mathcal{T} be a general \mathcal{EL} TBox in normal form and \mathcal{T}^* the saturated TBox obtained by exhaustive application of the classification rules.

The canonical interpretation $\mathcal{I}_{\mathcal{T}^*}$ induced by \mathcal{T}^* is defined as follows:

$\Delta_{\mathcal{I}_{\mathcal{T^*}}} = \{ A \mid A \text{ is a concept name in } \text{sig}(\mathcal{T}) \} \cup \{ \top \}$;

$A_{\mathcal{I}_{\mathcal{T^*}}} = \{ B \in \Delta_{\mathcal{I}_{\mathcal{T^*}}} \mid B \sqsubseteq A \in \mathcal{T}^* \}$ for all concept names $A \in \text{sig}(\mathcal{T})$;

$r_{\mathcal{I}_{\mathcal{T^*}}} = \{(A, B) \in \Delta_{\mathcal{I}_{\mathcal{T^*}}} \times \Delta_{\mathcal{I}_{\mathcal{T^*}}} \mid A \sqsubseteq \exists r . B \in \mathcal{T}^* \}$ for all role names $r \in \text{sig}(\mathcal{T})$.

Note:
- By definition, we have $B \in A_{\mathcal{I}_{\mathcal{T^*}}}$ iff $B \sqsubseteq A \in \mathcal{T}^*$ for all concept names $A \in \text{sig}(\mathcal{T})$.
- The same is actually true for $A = \top$.

© Franz Baader
Canonical model

Lemma 6.12

The canonical interpretation induced by T^* is a model of the saturated TBox T^*.

Proof: blackboard.

Lemma 6.13 (Completeness)

Let T be a general $E\mathcal{L}$ TBox in normal form and T^* the saturated TBox obtained by exhaustive application of the classification rules. Then

$$T \models A \sqsubseteq B \text{ implies } A \sqsubseteq B \in T^*.$$

Proof: blackboard.

Theorem 6.14

Subsumption in $E\mathcal{L}$ w.r.t. general TBoxes is decidable in polynomial time.

Proof: blackboard.
6.2 Subsumption in \mathcal{ELI} w.r.t. general TBoxes

Inverse roles: if r is a role, then r^{-} denotes its inverse

$$ (r^{-})^I := \{(e, d) \mid (d, e) \in r^I\} $$

As usual, we will use r^{-} to denote s if $r = s^{-}$ for a role name s.

In contrast to the case of \mathcal{EL}, subsumption in \mathcal{ELI} w.r.t. general TBoxes is no longer polynomial, but ExpTime-complete.

One reason for the higher complexity of subsumption in \mathcal{ELI} is that it can express a restricted form of value restrictions, and thus comes close to \mathcal{FL}_{0}:

$$ \exists r^{-}. C \sqsubseteq D \quad \text{has the same models as} \quad C \sqsubseteq \forall r. D $$

In the following, we will show the ExpTime-upper bound.
Normalisation of an \mathcal{ELI} TBox

We say that the general \mathcal{ELI} TBox \mathcal{T} is in i.normal form (or i.normalised) if all its GCIs are of one of the following forms:

\[A \subseteq B, \quad A_1 \sqcap A_2 \subseteq B, \quad A \subseteq \exists r. B, \quad \text{or} \quad A \subseteq \forall r. B, \]

where A, A_1, A_2, B are concept names or the top-concept \top and r is a role name or the inverse of a role name.

Corollary 6.15

Given a general \mathcal{ELI} TBox \mathcal{T}, we can compute in polynomial time an i.normalised \mathcal{ELI} TBox $\mathcal{T'}$ that is a conservative extension of \mathcal{T}.

In particular, we have

\[\mathcal{T} \models A \subseteq B \quad \text{iff} \quad \mathcal{T'} \models A \subseteq B \]

for all concept names $A, B \in \text{sig}(\mathcal{T})$.

Proof: blackboard.
Classification procedure for \mathcal{ELI}

We assume that the input TBox \mathcal{T} is a general \mathcal{ELI} TBox in i.normal form.

The higher complexity of subsumption in \mathcal{ELI} necessitates the use of an extended notion of sequents:

Definition 6.16

A \mathcal{T}-i.sequent is an expression of the form

\[K \sqsubseteq \{A\}, \quad K \sqsubseteq \exists r.K', \quad \text{or} \quad K \sqsubseteq \forall r.\{A\}, \]

where K, K' are sets of concept names in $\text{sig}(\mathcal{T})$, A is a concept name in $\text{sig}(\mathcal{T})$, and r is a role name in $\text{sig}(\mathcal{T})$ or the inverse of a role name in $\text{sig}(\mathcal{T})$.

Note:
- The overall number of \mathcal{T}-i.sequents is exponential in the size of \mathcal{T}.
- A set in a \mathcal{T}-i.sequent stands for the conjunction of its element.

empty conjunction is \top
Classification procedure for \mathcal{ELI}

We assume that the input TBox \mathcal{T} is a general \mathcal{ELI} TBox in i.normal form.

The higher complexity of subsumption in \mathcal{ELI} necessitates the use of an extended notion of sequents:

Definition 6.16

A \mathcal{T}-i.sequent is an expression of the form

$$K \subseteq \{A\}, \quad K \subseteq \exists r.K', \quad \text{or} \quad K \subseteq \forall r.\{A\},$$

where K, K' are sets of concept names in $\text{sig}(\mathcal{T})$, A is a concept name in $\text{sig}(\mathcal{T})$, and r is a role name in $\text{sig}(\mathcal{T})$ or the inverse of a role name in $\text{sig}(\mathcal{T})$.

Note:
- The overall number of \mathcal{T}-i.sequents is exponential in the size of \mathcal{T}.
- A set in a \mathcal{T}-i.sequent stands for the conjunction of its element.
- \mathcal{T}-i.sequents are GCIs, and a set of \mathcal{T}-i.sequents is a general \mathcal{ELI} TBox.
- Every GCI in the i.normalised TBox \mathcal{T} is either equivalent to a \mathcal{T}-i.sequent or a tautology, i.e., satisfied in every interpretation.
Classification rules for \mathcal{ELI}

\[
\begin{align*}
i.CR1 & \quad K \sqsubseteq \{A\} & \text{if } A \in K \text{ and } K \text{ occurs in } \mathcal{T}' \\
i.CR2 & \quad M \sqsubseteq \{B\} \text{ for all } B \in K & K \sqsubseteq C \quad M \sqsubseteq C & \text{if } M \text{ occurs in } \mathcal{T}' \\
i.CR3 & \quad M_2 \sqsubseteq \exists r.M_1 & M_1 \sqsubseteq \forall r^{-}.\{A\} & M_2 \sqsubseteq \{A\} \\
i.CR4 & \quad M_1 \sqsubseteq \exists r.M_2 & M_1 \sqsubseteq \forall r.\{A\} & M_1 \sqsubseteq \exists r.(M_2 \cup \{A\})
\end{align*}
\]

The rules given above are, again, not concrete rules, but rule schemata.

Concrete instance: replace K, M, M_1, M_2 by sets of concept names in $\text{sig}(\mathcal{T})$, A by a concept name in $\text{sig}(\mathcal{T})$, r by a role name or inverse of a role name in $\text{sig}(\mathcal{T})$, C by any admissible right-hand side of a \mathcal{T}-i.sequent.
Classification rules

In i.CR1, only instantiations are allowed for which K actually occurs explicitly in some \mathcal{T}-i.sequent in the current TBox \mathcal{T}'.

Reason:
Otherwise, the procedure would always generate an exponential number of \mathcal{T}-i.sequents.

The analogous restriction on M in rule i.CR2 is needed in the case where $K = \emptyset$.

Condition “$M \sqsubseteq \{B\}$ for all $B \in K$” trivially satisfied for all sets M.
Classification rules

\[\text{i.CR1} \quad \frac{K \sqsubseteq \{A\}}{\text{if } A \in K \text{ and } K \text{ occurs in } T'} \]

\[\text{i.CR2} \quad \frac{M \sqsubseteq \{B\} \text{ for all } B \in K \quad K \sqsubseteq C}{M \sqsubseteq C} \quad \text{if } M \text{ occurs in } T' \]

Example 6.17

\[T = \{A \sqsubseteq B\} \cup \{A_i \sqsubseteq A_i \mid 1 \leq i \leq n\} \]

We have \(T \models M \sqcup \{A\} \sqsubseteq \{B\} \) for all (exponentially many) sets \(\emptyset \neq M \sqsubseteq \{A_1, \ldots, A_n\} \).

None of these \(T \text{-i.sequents} \) is actually generated by the rules when applied to \(T' = \{\{A\} \sqsubseteq \{B\}\} \cup \{\{A_i\} \sqsubseteq \{A_i\} \mid 1 \leq i \leq n\} \).
Classification rules

Rule Schemata

- **i.CR1**
 \[
 K \sqsubseteq \{A\} \quad \text{if } A \in K \text{ and } K \text{ occurs in } T'
 \]

- **i.CR2**
 \[
 M \sqsubseteq \{B\} \quad \text{for all } B \in K \quad K \sqsubseteq C
 \]
 \[
 \Rightarrow M \sqsubseteq C
 \]
 \[
 \text{if } M \text{ occurs in } T'
 \]

Example 6.18 (i.CR1 and i.CR2 in action)

\[
T = \{A \sqsubseteq \exists r.(A_1 \cap A_2 \cap A_3), \exists r.(A_1 \cap A_2) \sqsubseteq B\}
\]

Blackboard.
Classification rules

Due to the occurrence restrictions, the rules i.CR1 and i.CR2 cannot introduce new sets of concept names into T'.

The same is obviously true (without any restriction) for i.CR3.

In contrast, rule i.CR4 can generate new sets, and thus may cause an exponential blowup.
Classification rules

\[
\begin{align*}
\text{i.CR1} & \quad K \subseteq \{A\} \quad \text{if } A \in K \text{ and } K \text{ occurs in } T' \\
\text{i.CR2} & \quad M \subseteq \{B\} \text{ for all } B \in K \quad K \subseteq C \\
\text{if } M \text{ occurs in } T' \\
\text{i.CR3} & \quad M_2 \subseteq \exists r. M_1 \quad M_1 \subseteq \forall r^- \{A\} \\
\quad M_2 \subseteq \{A\} \\
\text{i.CR4} & \quad M_1 \subseteq \exists r. M_2 \quad M_1 \subseteq \forall r. \{A\} \\
\text{if } M_1 \subseteq \exists r. (M_2 \cup \{A\})
\end{align*}
\]

\underline{Example 6.19 (exponential blowup)}

\[\mathcal{T} := \{A \sqsubseteq \exists r. T\} \cup \{\exists r^- . A \sqsubseteq A_i \mid i = 1, \ldots, n\}\]

i.normalisation: \[\mathcal{T}' := \{\{A\} \sqsubseteq \exists r. \emptyset\} \cup \{\{A\} \sqsubseteq \forall r. \{A_i\} \mid i = 1, \ldots, n\}\]
Classification algorithm

i. Saturation of \mathcal{T}:
- apply the classification rules exhaustively to the input TBox \mathcal{T}
- the resulting TBox \mathcal{T}^* is called the i.saturated TBox

The i.saturated TBox \mathcal{T}^* is again uniquely determined by \mathcal{T}.

Proposition 6.20 (soundness and completeness)

For all concept names A, B in $\text{sig}(\mathcal{T})$ such that $\{A\}$ occurs in \mathcal{T}^* we have

$$\mathcal{T} \models A \sqsubseteq B \iff \{A\} \sqsubseteq \{B\} \in \mathcal{T}^*.$$

Condition $\{A\}$ occurs in \mathcal{T}^*:

can easily be satisfied by adding $A \sqsubseteq A$ to the input TBox.

\mathcal{T}-i.sequent $\{A\} \sqsubseteq \{A\}$
Classification algorithm

Soundness, i.e. the if direction of Proposition 6.20, is an easy consequence of the next lemma and the fact that any GCI in \mathcal{T} follows from \mathcal{T}.

Lemma 6.21 (soundness)

Assume that

- all the GCIs in \mathcal{T}' follow from \mathcal{T} and
- the \mathcal{T}-i.sequents above the line of one of the classification rules belong to \mathcal{T}'.

Then the \mathcal{T}-i.sequent below the line also follows from \mathcal{T}.

Proof: blackboard.
To show completeness, i.e. the only-if direction of Proposition 6.20, we construct an appropriate canonical interpretation.

Definition 6.22 (canonical interpretation)

Let \mathcal{T} be a general \mathcal{ELI} TBox in i.normal form and \mathcal{T}^* the i.saturated TBox obtained by exhaustive application of the classification rules.

The canonical interpretation $\mathcal{I}_{\mathcal{T}^*}$ induced by \mathcal{T}^* is defined as follows:

- $\Delta^{\mathcal{I}_{\mathcal{T}^*}} = \{ M \mid M \text{ is a set of concept names in } \text{sig}(\mathcal{T}) \text{ that occurs in } \mathcal{T}^* \}$,
- $A^{\mathcal{I}_{\mathcal{T}^*}} = \{ M \in \Delta^{\mathcal{I}_{\mathcal{T}^*}} \mid M \sqsubseteq \{ A \} \in \mathcal{T}^* \}$,
- $s^{\mathcal{I}_{\mathcal{T}^*}} = \{ (M, N) \in \Delta^{\mathcal{I}_{\mathcal{T}^*}} \times \Delta^{\mathcal{I}_{\mathcal{T}^*}} \mid M \sqsubseteq \exists s . N \in \mathcal{T}^* \text{ and } N \text{ is maximal, i.e., there is no } N' \supseteq N \text{ such that } M \sqsubseteq \exists s . N' \in \mathcal{T}^* \} \cup \{ (N, M) \in \Delta^{\mathcal{I}_{\mathcal{T}^*}} \times \Delta^{\mathcal{I}_{\mathcal{T}^*}} \mid M \sqsubseteq \exists s^- . N \in \mathcal{T}^* \text{ and } N \text{ is maximal, i.e., there is no } N' \supseteq N \text{ such that } M \sqsubseteq \exists s^- . N' \in \mathcal{T}^* \}$.
Lemma 6.23

Let r be a role name or the inverse of a role name. Then

$$r^\mathcal{I}_{\tau^*} = \{(M, N) \in \Delta^\mathcal{I}_{\tau^*} \times \Delta^\mathcal{I}_{\tau^*} \mid M \sqsubseteq \exists r . N \in \mathcal{T}^*, \ N \text{ maximal}\} \cup \{(N, M) \in \Delta^\mathcal{I}_{\tau^*} \times \Delta^\mathcal{I}_{\tau^*} \mid M \sqsubseteq \exists r^- . N \in \mathcal{T}^*, \ N \text{ maximal}\}.$$

Proof: blackboard.

Lemma 6.24

The canonical interpretation induced by \mathcal{T}^* is a model of the i.saturated TBox \mathcal{T}^*.

Proof: blackboard.
Classification algorithm completeness

Example (maximality condition needed)

Consider Example 6.19, where all the \mathcal{T}-i.sequents

$$\{A\} \subseteq \exists r.M \text{ for } M \subseteq \{A_1, \ldots, A_n\}$$

belong to \mathcal{T}^*.

We have $(\{A\}, \{A_1, \ldots, A_n\}) \in r^{\mathcal{T}_r}$,

but $(\{A\}, M) \notin r^{\mathcal{T}_r}$, for any strict subset $M \subset \{A_1, \ldots, A_n\}$.

In fact, such a role relationship would violate one of the GCIs

$$\{A\} \subseteq \forall r.\{A_i\}.$$
Lemma 6.25 (completeness)

Let A, B in $\text{sig}(\mathcal{T})$ be such that $\{A\}$ occurs in \mathcal{T}^*. Then $\mathcal{T} \models A \sqsubseteq B$ implies $\{A\} \sqsubseteq \{B\} \in \mathcal{T}^*$.

Proof: blackboard.

Theorem 6.26

Subsumption in \mathcal{ELI} w.r.t. general TBoxes is decidable in exponential time.

Proof: blackboard.
We can show that the algorithm for \mathcal{ELT} runs in polynomial time if it receives a general \mathcal{EL} TBox as input.

\mathcal{ELT}-i.sequents are \mathcal{T}-i.sequents satisfying the following restrictions:

1. the only sets occurring in them are the empty set and singleton sets,
2. value restrictions in these \mathcal{T}-i.sequents are only w.r.t. inverses of role names;
3. existential restrictions in these \mathcal{T}-i.sequents are only w.r.t. role names.

If we start with an \mathcal{EL} TBox \mathcal{T}_0, then the corresponding i.normalised TBox \mathcal{T} (written as a set of \mathcal{T}-i.sequents) contains only \mathcal{ELT}-i.sequents.
Classification algorithm for \mathcal{ELI} applied to \mathcal{EL}

Lemma 6.27

There are only polynomially many \mathcal{EL}-\mathcal{T}-i.sequents in the size of \mathcal{T}.

In addition, applying a classification rule for \mathcal{ELI} to a set \mathcal{T}' of \mathcal{EL}-\mathcal{T}-i.sequents yields a set of \mathcal{EL}-\mathcal{T}-i.sequents.

Proof: blackboard.

Proposition 6.28

The subsumption algorithm for \mathcal{ELI} yields a polynomial-time decision procedure for subsumption in \mathcal{EL}.

Proof: blackboard.
Classification algorithm for \mathcal{ELI} is exponential

In Example 6.29, the i.saturated TBox \mathcal{T}^* contains exponentially many \mathcal{T}-i.sequents.

In the following example, one needs to derive exponentially many \mathcal{T}-i.sequents before the consequence $\{A\} \subseteq \{B\}$ can be derived.

Example 6.29 (unavoidable exponential blowup)

\[
\begin{align*}
\{A\} & \subseteq \{\overline{X}_i\} \text{ for } 0 \leq i \leq n - 1, \\
\emptyset & \subseteq \exists r.\emptyset, \\
\{\overline{X}_i, X_0, \ldots, X_{i-1}\} & \subseteq \forall r.\{X_i\} \text{ for } 0 \leq i \leq n - 1, \\
\{X_i, X_0, \ldots, X_{i-1}\} & \subseteq \forall r.\{\overline{X}_i\} \text{ for } 0 \leq i \leq n - 1, \\
\{\overline{X}_i, \overline{X}_j\} & \subseteq \forall r.\{\overline{X}_i\} \text{ for } 0 \leq j < i \leq n - 1, \\
\{X_i, \overline{X}_j\} & \subseteq \forall r.\{X_i\} \text{ for } 0 \leq j < i \leq n - 1, \\
\{X_0, \ldots, X_{n-1}\} & \subseteq \{B\}, \\
\{B\} & \subseteq \forall r^{-}.\{B\}.
\end{align*}
\]