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About the Course

Course Material
• Book "Nonmonotonic Reasoning" by Grigoris Antoniou
• Book "Nonmonotonic Reasoning" by G. Brewka, J. Dix, K. Konolige
• available on course website:

– Slides
– Exercise Sheets

• Things written on the blackboard

Contact Information
• anni-yasmin.turhan@tu-dresden.de
• course web page:

https://lat.inf.tu-dresden.de/teaching/ws2017-2018/NMR/

Exams
Oral exams at the end of the semester or during semester break
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Section 1

Introduction

A non-technical one!
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Nonmonotonic Reasoning
is a long-standing area of knowledge representation and thus of AI

Classical Logic
is monotone in the following sense:
Whenever a formula ' is a logical consequence of a set of formulas T ,
then ' is also a logical consequence of an arbitrary superset of T .

Common sense reasoning
works differently:
We draw plausible conclusions based on the assumption the world is normal and
works as expected.

Best we can do under incomplete information.

Sometimes the normality assumption goes wrong.

Nonmonotonic Reasoning
: additional information may invalidate conclusions drawn earlier

TU Dresden, WS 2017/18 Introduction to Nonmonotonic Reasoning Slide 4



An Example

Assume you want to meet Prof. Petterson.

She usually is in the CS building in the afternoon.

You assume that this is the case today and go to the CS department in the
afternoon.

Many people stand in front of the building—a while ago a fire alarm has gone
off.

This new piece of information invalidates the normality assumption and so the
conclusion about the present location of Prof. Petterson, too!
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Major Application Problems

Databases
Suppose we want to build a DB about airline flights

• put positive facts:
"Flight from DRS to LHR, by StarAir, 8.00 am, Oct. 12th"

• assumption: DB contains all relevant facts
– impossible to put all negative facts!
– inconvenient for updates!

• solution proposed by R. Reiter ’78: capture the assumption formally
Closed world assumption (CWA)
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Major Application Problems

Puzzles
• e.g. "Missionaries and cannibals":

3 missionaries and 3 cannibals come to a river. A row boat with 2 seats is
available. If the cannibals outnumber the missionaries, on a bank of the river,
the missionaries will be eaten. How shall they cross the river?

• easy: stating positive facts, e.g. "the boat carries 2 people."
• difficult: stating negative assumptions, e.g. "the river can only be crossed by

boat."
• formal approach for dealing with unstated assumptions: circumscription by J.

McCarthy
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Major Application Problems

Diagnosis
• Diagnosis is a nonmonotonic task!
• Suppose an emergency case is brought in.

The doctor treats the patient immediately without knowing the cause of the
symptoms ; makes assumptions about the "most plausible" and "worst
possible" cause.

• Reasoning task: find "most plausible cause" of the problem

Natural language understanding
• natural language is ambiguous ; competing interpretations
• if choice was wrong, working hypothesis may be revised
• nonmonotonic reasoning provides mechanisms to support these operations

Legal reasoning
• Most legal regulations are rules with exceptions
• defaults can represent this naturally
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Rules with exceptions

Most rules we use in commonsense reasoning such as:

"Professors teach."
"Birds fly."
"Well tested software is reliable."

describe what normally holds, but not necessarily without exception.

This is in contrast to formulas in first order logic:

8x
�
prof(x) �! teaches(x)

�

8x
�
bird(x) �! flies(x)

�

8x
�
Software(x) ^well-tested(x) �! reliable(x)

�

To apply such a rule we need to know whether the concrete instance is exceptional.
How to derive this?
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The Frame Problem

• To express effects of actions (and reason about changes they cause),
one has to indicate under what circumstances a proposition whose truth
value may vary does hold.

• E.g. in situation calculus, effects of actions can easily be described.
It is more problematic to describe what does not change when an event
occurs.

• The frame problem asks how to represent the large amount of non-changes
when reasoning about action.

Idea: use a persistence rule such as
"what holds in a situation typically holds in the situation after
an action was performed, unless it contradicts the descrip-
tion of the effects of the action."

This rule is nonmonotonic!
• The frame problem has provided a major impetus to research of

nonmonotonic reasoning
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Overview of the lecture

Main topics
Default logic

Autoepistemic Logic

Circumscription

Nonmonotonic inference rules

Belief Revision
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Default Logics

• introduced by Ray Reiter in 1980
• default logics distinguish:

axioms (or facts) from rules of thumb called defaults
E.g.:

bird(x) : flies(x)
flies(x)

• default theory:
– set of facts: certain, but incomplete information about the world
– set of defaults: sanction plausible but not necessarily true conclusions

• reasoning under the closed world assumption
• operational semantics by extensions (:beliefs that may hold about the domain)
• Goal: compute sets of acceptable beliefs
• variants of default logics
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Autoepistemic Logics (AEL)

• proposed by Robert C. Moore in 1985
• “autoepistemic”: reflection upon self-knowledge
• AELs can express the lack of facts
• an ideally rational agent forms belief sets given initial assumption
• closely related to Modal logics
• emphasis on inference relations
• compute expansions — specifies which formulas are true and which ones are

false
• computation of set of preferred models (⇡ “normal models”): minimization of

the extension of some predicates
New information changes this set!

• computational properties
• relation to default logic
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Circumscription

• introduced by John McCarthy
objective: formalize common sense reasoning used in dealing with everyday
problems

• Refined and formalized by Vladimir Lifschitz
• implicit assumption of inertia: things do not change unless otherwise

specified.
• also based on preferred models (minimizing the extent of some predicates)
• computational properties
• relation to default logic
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Belief Revision

• investigated by Alchourrón, Gärdenfors, Makinson
• provides operations to model change
• inconsistent knowledge: which facts to give up, which to keep?
• computational model: change of finite theory basis and iterated revision
• minimality principle, AGM postulates
• computational properties
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Nonmonotonic inference rules

• orthogonal view:
which postulates should a “good” nonmonotonic inference rule fulfill?

• interaction of logical connectives
• preferential models
• formal properties of inference rules
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Section 2

Preliminaries

A technical brush-up!
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First Order Logic (FOL)
a.k.a. Predicate logic

Predicate logic
• is a classical monotone logic
• basis for the approaches discussed in this lecture
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Syntax of First Order Logic

Symbols:
• special characters:
^ (conjunction) , _ (disjunction), ¬ (negation),
�! (implication), ! (equivalence),
9 (existential quantifier), 8 (universal quantifier),
(, ),
V1, . . . , Vn (countable set of variables)

• signature ⌃
Intuitively, ⌃ contains the predicate symbols, function symbols each
associated with an arity.
E.g.: ⌃ = {(+, 3), (inc, 1), . . . }

A function symbol of arity 0 is called a constant.

A predicate symbol of arity 0 is called an atom (or proposition).
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Syntax of First Order Logic: Terms

(Consider a fixed signature ⌃.)

Definition 2.1 (Terms)
FOL terms are defined as:

• Every variable or constant is a term.
• If f is a function of arity n and t1, . . . , tn are terms, then f(t1, . . . , tn) is a term.
• There is no other way of building terms.

A term is called ground iff1 it does not contain any variables.

1short-hand for “if and only if”.
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Syntax of First Order Logic: FOL Formulas

Definition 2.2 (Formulas)
Let p be a predicate symbol of arity n, t1, . . . , tn are terms, ' and  be formulas and
X be a variable. FOL formulas are defined as:

• p(t1, . . . , tn) is an (atomic) formula
• the following are (complex) formulas:

– ¬'
– (' _  )
– (' ^  )
– (' �!  )
– (' !  )
– (9X')
– (8X')

• There is no other way of building formulas.

If in p(t1, . . . , tn) all terms ti (1  i  n) are ground, then p(t1, . . . , tn) is a ground
atomic formula.

If ⌃ does contain only atoms (propositions!) and there are no variables in a formula
', then ' is a formula of propositional logic.

NB: We may omit occasionally parentheses.
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Syntax of First Order Logic: parts of formulas, kinds of
variables

A term t0 is a subterm of a term t, if it is a sub-string of t.

For an occurrence of 8X' or 9X' within a formula  , ' is the scope of the
quantification 8X' resp. 9X'.

An occurrence of a variable X in a formula  is called bound iff it is included in
the scope of a quantification 8X or 9X ; otherwise the variable is free.

The variables for which there exists at least one free occurrence in a formula
 are the free variables in  .

A formula is closed if it has no free variables, otherwise it is open.

Closed formulas are called sentences.

For every open formula  we define 8( ), the universal closure of  , to be
the formula
8X1 . . . 8Xn  , where X1, . . . , Xn are all the free variables in  .
(Existential closure is defined analogously.)

A literal L is either an atomic formula (positive literal) or its negation (negative
literal).
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Auxiliary sets

We define the following auxiliary sets:

NVar is the set of all variables

NPred is the set of all predicates

NFunc is the set of all relations

N⌃
Pred is the subset of all predicates in a given ⌃, i.e., N⌃

Pred = NPred \ ⌃

N⌃
Func is the subset of all relations in a given ⌃, i.e., N⌃

Func = NFunc \ ⌃
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Substitutions . . . in terms
What to do with variables?

Definition 2.3 (Substitution)
A substitution � is a finite set {X1/t1, . . . , Xn/tn} s.t.2

X1 . . . , Xn are different variables, and
ti is a term different from Xi (for all 1  i  n).

If all terms are ground, then � is a ground substitution.

Intuition:
The result of applying a substitution � to a term t (denoted t�) is replacing all
occurrences of Xi in t by ti simultaneously.

For example:
Let �ex = {V1/p0(), V2/q(V1), V3/q0(V 2, p0())} and t = p

�
V2, f(V1, V2), V3

�
,

then t� = p
�
q(V1), f(p0(), q(V1), q0(V 2, p0())

�

(t�)� = p
�
q(p0()), f(p0(), q(p0()), q0(q(V1), p0())

�

((t�)�)� = p
�
q(p0()), f(p0(), q(p0()), q0(q(p0()), p0())

�

2
abbreviation for "such that"
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Substitutions . . . in formulas

Lifting substitutions to formulas:
The result of applying a substitution � to a formula ' (denoted '�) is replacing all
free occurrences of Xi in ' by ti .

'� is a ground instance of ', if '� contains no free variables.

'� is admissible, if none of the variables of any ti becomes bound after � has been
applied to �.
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Semantics of FOL

Definition 2.4 (Interpretation)
An interpretation I consists of

• a non-empty set dom(I) the interpretation domain (or universe),
• a function fI : dom(I)n �! dom(I) for every function symbol f of arity n.
• a relation pI ✓ dom(I)n for every predicate symbol p of arity n.

For example:
we can model the mathematical concept of graphs as a pair G = (V, E), where V is
the interpretation domain of vertices and E is the binary edge relation.
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Semantics of FOL

The state over an interpretation I is a function sta : NVar �! dom(I).

Given: variable X and value a 2 dom(I).
The modified state, where X is substituted by a sta [X/a] is as function sta, but now
X is assigned to a.

Definition 2.5 (Value of a term)
Given an interpretation I and a state sta.
Then the value of a term t is defined inductively as:

• valI,sta(X ) = sta(X )

• valI,sta(f(t1, . . . , tn)) = fI(valI,sta(t1), . . . , valI,sta(tn)).
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Semantics of FOL formulas

Definition 2.6
Given: an interpretation I and a state sta.
We define when a formula ' is true in I and sta (denoted I |=sta '), inductively:

• I |=sta p(t1, . . . , tn) iff (valI,sta(t1), . . . , valI,sta(tn)) 2 pI

• I |=sta ¬ iff I 6|=sta  

• I |=sta ( 1 _  2) iff I |=sta  1 or I |=sta  2

• I |=sta ( 1 ^  2) iff I |=sta  1 and I |=sta  2

• I |=sta ( 1 �!  2) iff I |=sta (¬ 1 _  2)

• I |=sta ( 1  !  2) iff I |=sta ( 1 ^  2) or I |=sta (¬ 1 ^ ¬ 2)

• I |=sta 8X iff I |=sta[X/a]  for all a 2 dom(I)
• I |=sta 9X iff there is an a 2 dom(I) s.t. I |=sta[X/a]  

Note: state sta is irrelevant, if the formula is ground.
The truth-value depends only on I.
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Model, validity of FOL formulas

Definition 2.7 (valid, model)
A FOL formula ' is valid (or true) in I, if I |= ' for all states over I.
In this case I is a model of ' (denoted I |= ').

Lifting this to sets of formulas:
I is a model of a set of formulas M (I |= M),
iff it is a model of each formula in M.

A set of formulas M0 follows (logically) from a set of formulas M (denoted M |= M0)
iff every model of M is also a model of M0.

Definition 2.8 (Deductive closure, theory)
Let M be a set of formulas. Th(M) denotes the set of all formulas that follow from
M (called the deductive closure of M).
If M = Th(M), then M is called deductively closed.
A deductively closed set of closed formulas is called a Theory.
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Reasoning in FOL

Definition 2.9 (Tautology, satisfiable)
A formula is a tautology (or valid), iff it is valid in every interpretation.

True or > denote tautologies. False and ? denote negations of tautologies.

A formula ' is satisfiable iff there is an interpretation I and a state sta s.t.
I |=sta '. A set of formulas M is satisfiable iff there is an interpretation I and
a state sta s.t. I |=sta M.

The formulas ' and  are equivalent iff ' !  is a tautology.

A set of formulas M is consistent iff M is satisfiable. A formula ' is
consistent with M iff M [ {'} is consistent.
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Normal forms

A FOL formula is in . . .

Prenex normal form
if it has the form Q1X1 · · ·QnXn', where Qi are quantifiers, Xi are variables,
and ' a formula not containing any quantifiers.

Conjunctive normal form (CNF)
if it has the form

Vn
i=1

Wm
j=1 Lij with literals Lij .

Disjunctive normal form (DNF)
if it has the form

Wn
i=1

Vm
j=1 Lij with literals Lij .

Skolem normal form
if it has the form 8X1 · · · 8Xn', where ' is a quantifier-free formula in CNF.
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Herbrand interpretation

Definition 2.10 (Herbrand interpretation)
A Herbrand interpretation is an interpretation I with the following properties:

1. dom(I) is the set of all ground terms.

2. Function symbols are interpreted in a fixed way:

fI(t1, . . . , tn) = f(t1, . . . , tn)

for ground terms t1, . . . , tn.

Not fixed in a Herbrand interpretation: interpretation of the predicate symbols.
Herbrand interpretations can be represented as a set of ground literals.
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Two important theorems

Herbrand’s Theorem
Let M be a set of formulas of the form 8X1 . . . 8Xn with a quantifier-free formula
 . The set of formulas ground (M) is defined as the set of formulas obtained by
 [X1/t1, . . . , Xn/tn], where the ti are arbitrary ground terms.

According to Herbrand’s Theorem the following statements are equivalent:
• M has a model
• M has a Herbrand model
• ground(M) has a model
• ground(M) has a Herbrand model

Compactness Theorem
The compactness theorem says that a set of M of formulas is satisfiable iff every
finite subset of M is satisfiable.
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