
Section 3

Default Logic

Subsection 3.1

Introducing defaults and default logics
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Introducing defaults and default logics: an example

Suppose you are asked how you get to the university in the morning.

By bike (usually)!
gotoWork : byBike

byBike

new information: It is snowing heavily and your bike’s tire is flat.
(You cannot assume that you go by bike.))

The default is no longer applicable

revise previous conclusion

Why can classical logic not model this?
goToUni ^ ¬snow ^ ¬FlatTire �! useBike

• There are more reasons not to use the bike, e.g. broke brakes, demonstration
in the city, . . . The formula would need to list all possible obstacles!

• All preconditions would need to be established to be true, so that the rule
applies!
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Default reasoning

Defaults can be used to model several forms of (common sense) reasoning.

• Prototypical reasoning: most instances of a category have a property.

“Typically, children have parents”
child(X ) : hasParents(X )

hasParents(X )

• No-risk reasoning: concerns situations where a conclusion is drawn even if it
is not the most probable, because another conclusion could lead to disaster.

“in absence of evidence to the contrary
assume the accused is innocent”

accused(X ) : innocent(X )
innocent(X )

• Best-guess reasoning: for instance, we know that there are some shopping
centers in this city and some are open on Sundays, but we don’t know which
one. We would try the closest first, although we don’t have evidence of it.

closest(X ) : openSundays(X )
openSundays(X )

Default reasoning appears in many application domains: legal reasoning, diagnosis,
reasoning about actions, etc.
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Introducing defaults and default logics

• Default logics were introduced by Ray Reiter in 1980
• Default reasoning appears when reasoning is done under the closed world

assumption and using inference rules that admit exceptions (rules that hold
under the normality assumption)
“. . . in absence of any information to the contrary, assume . . . ”

• Classical inference rules sanction the derivation of a formula whenever some
other formulas are derived.

• Default rules require an additional consistency condition to hold.

E.g.: the rule “normally birds fly” is represented as
bird(x) : flies(x)

flies(x)

This states that:
“if bird(J) is given or derived for a particular ground term J and
flies(J) is consistent (there is no information that ¬flies(J) holds),
then flies(J) can be derived “by default”.

Consistent with what? Set of formulas that can “reasonably” be accepted
based on the available information.
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Syntax of Default Logic

Definition 3.1 (Default theory)
A default theory is a pair (W, D) consisting of

• W : a set of FOL formulas (called facts or axioms)
• D: a countable set of defaults

A default � has the form
' :  1, . . . , n

�
,

where ', 1, . . . , n, and � are closed FOL formulas and n > 0.

The formula
• ' is called the prerequisite (denoted by pre(�)),
•  1, . . . , n the justifications (denoted by just(�)), and
• � the consequent of � (denoted by cons(�)).
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Why closed formulas?

Actually,
bird(x) : flies(x)

flies(x)

is not a default according to Definition 3.1. We call such “defaults” open defaults.
An open default is interpreted as a default schema representing a (possibly infinite)
set of defaults.

A default schema differs from a default in that ', 1, . . . , n,� are arbitrary FOL
formulas (may contain free variables). A default schema defines a set of defaults

'� :  1�, . . . , n�

��

for all ground substitutions � that assign values to all free variables occurring in the
schema.
; Free variables : interpreted as being universally quantified over the whole

default schema
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Why closed formulas?

The open default
bird(x) : flies(x)

flies(x)

would read under

• universally quantified variables as
“If all X are birds, and if for all X we may assume that they fly, then we
conclude that all X fly.”

– Does not match the intuition.
– Would only be applicable, if every object in the domain is a bird.

• existentially quantified variables as
“If there is a bird and if there is an X that flies, then conclude that there is
some flying object.”

– Would not allow to conclude from bird(tweety) that
flies(tweety) holds.

– instead we would conclude: 9X flies(X )

TU Dresden, WS 2017/18 Introduction to Nonmonotonic Reasoning Slide 40



Towards the semantics of defaults
The informal meaning of a default

' : 1,..., n
� is:

“If '’ is known, and if it is consistent to assume that  1, . . . , n, then conclude �.”

In the formal semantics we must say

1. where ' should be included

2. with what should  1, . . . , n be consistent

With what should  1, . . . , n be consistent? A first attempt: the facts.
Consider the default

friend(X, Y ) ^ friend(Y, Z) : friend(X, Z)
friend(X, Z)

Given the facts: friend(tom, bob), friend(bob, sally), friend(sally, tina).
Wanted conclusion: friend(tom, tina)

This is only possible if we apply the appropriate instance of the default schema to
friend(sally, tina) and friend(tom, sally). But friend(tom, sally) is derived by a
previous application of the default schema!
Without this intermediate result and from the facts alone, we could not derive this.
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Towards the semantics of defaults

Example 3.2
Let’s consider T = (W, D) with W = {green, ADACmember} and D = {�1, �2},
where

�1 =
green : ¬likesCars

¬likesCars
and �2 =

ADACmember : likesCars
likesCars

If consistency is tested against W , both defaults can be applied. Deriving
¬likesCars and likesCars, which is a contradiction!

Alternative:
apply the first default �1, check for consistency with the knowledge derived so far.
Would block the application of the second default �2.
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Informal semantics of defaults

A general formulation:
If ' is currently known, and if all  i are consistent with the current knowledge base,
then conclude �.
The current knowledge base E is obtained from

• the facts and
• the consequents of some defaults that have been applied previously.

A more formal version:

� = ' : 1,..., n
� is applicable to a deductively closed set of formulas E iff

' 2 E and ¬ 1 62 E, . . . , ¬ 1 62 E.
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Towards extensions

Example 3.2 suggests that there can be several competing knowledge bases which
maybe inconsistent with each other.

Extensions
represent possible world views which are based on the given default theories. They
seek to extend the set of known facts with “reasonable” conjectures based on the
available defaults.

Desirable properties of extensions:

• an extension should include the set W of facts—the certain information
• an extension should be deductively closed

(Keep classical reasoning! Derive more from the defaults)
• an extension should be closed under the application of the defaults. Apply

defaults exhaustively.

Formally: if ' : 1,..., n
� 2 D,' 2 E and ¬ 1 62 E, . . . ,¬ n 62 E then � 2 E.

Extensions are maximal possible world views.
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Towards extensions – unwanted effects

1. "Ungrounded" beliefs
An extension must not contain "ungrounded" beliefs, i.e. every formula in the
extension must be derivable from W and the consequents of applied defaults.
We require extensions to be minimal w.r.t. to these properties.

Consider: T = (W, D) with W = {german} and D =
n

german : drinksBeer
drinksBeer

o

Now, E = Th({german,¬drinksBeer}) is minimal w.r.t. to the properties, but
unintuitive.

2. Applications of defaults can contradict the application of an earlier default.
Consider:

true : creditworthy
approveCredit

,
true : ¬creditworthy

¬creditworthy

We apply the first default, since nothing contradicts the assumption creditworthy .
We then apply the second, since ¬creditworthy is consistent with the knowledge,
¬creditworthy is derived.
Inclusion of ¬creditworthy shows a posteriori that, we should not have assumed
creditworthy .
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Subsection 3.2

Operational semantics of Default Logic

• based on the process in which inferences are drawn
• gives a procedure that can be applied

Idea:
• apply defaults as long as possible
• If a default should not have been applied, backtrack and try an alternative
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Operational Semantics

Given a default theory T = (W, D) let ⇧ = (�0, �1 . . . ) be (a finite or infinite)
sequence of defaults from D without multiple occurrences.
(Possible order in which some defaults from D are applied.)

⇧[k] denotes the initial segment of sequence ⇧ of length k.3

Each sequence ⇧ is associated with two sets: In(⇧) and Out(⇧)

• In(⇧) = Th
�
W [ {cons(�) | � occurs in ⇧}

�
.

• Out(⇧) = {¬ |  2 just(�) for some � in ⇧}.

Intuition:

• In(⇧) represents the current knowledge base after the defaults in ⇧ have
been applied

• Out(⇧) represents the formulas that should not become true even after
subsequent application of other defaults.

3
We assume (from now on) that the length of ⇧ is at least k.
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Example: default sequences

Example 3.3
Consider T = (W, D) with W = {a} and the defaults from D:

�1 =
a : ¬b
¬b

, �2 =
b : c

c

For ⇧a = (�1) we have In(⇧a) = Th({a,¬b}) and Out(⇧a) = {b}.
For ⇧b = (�2, �1) we have In(⇧b) = Th({a, c,¬b}) and Out(⇧b) = {¬c, b}

We have not assured that the defaults can be applied in the order given.
(�2, �1) cannot be applied in this order, since b 62 In(()) = Th(W ) = Th(a).

"Applicable sequences" are formalized by the notion of a process.
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Process

Definition 3.4 (Process, successful, closed)
⇧ is a process of T iff �k is applicable to In(⇧[k]) for every k s.t.4 �k occurs in ⇧.
Let ⇧ be a process. We define:

• ⇧ is successful iff In(⇧) \ Out(⇧) = ;. Otherwise, it is failed.
• ⇧ is closed iff every � 2 D that is applicable to In(⇧) already occurs in In(⇧)

Intuition:
Success of a process captures that is was "okay" to have assumed the justifications
of the applied defaults; no formula ¬ 2 Out(⇧) is part of the current knowledge
base, so it was consistent to assume  .

Closed processes correspond to the extension being closed under application of the
defaults.

4
"such that"
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Example: properties of processes

Consider the default theory T = (W, D) with W = {a} and D containing

�1 =
a : ¬b

d
, �2 =

true : c
b

⇧1 = (�1)
is successful, but not closed, since �2 may be applied to In(⇧1) = Th({a, d}).

⇧2 = (�2, �1)
is closed, but not successful. Since both In(⇧2) = Th(a, b, d) and
Out(⇧2) = {b,¬c} contain b.

⇧2 = (�2)
is a closed and successful process of T .
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Extension and closure—operational semantics

Definition 3.5 (Extension)
Let T be a default theory. A set of formulas E is an extension of T iff there is some
closed and successful process ⇧ s.t. E = Th(In(⇧)).

This definition may be applied directly to concrete examples.

To find a successful process, it suffices to generate a process ⇧, test whether
In(⇧) \ Out(⇧) = ; holds. If not, then backtrack.

A (in)finite default theory is a default theory, where D has (in)finitely many elements.

For finite default theories ensuring closure is conceptually easy: apply an applicable
default that has not been applied yet, until no more a left.

How about closure of infinite default theories?
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Closure of infinite theories

Lemma 3.6
An infinite process ⇧ of a default theory T = (W, D) is closed iff each default in D
that is applicable to In(⇧[k]), for infinitely many numbers k, is already contained in
⇧.

Proof: blackboard

A strategy that guarantees the closure of an infinite process ⇧ must take care that
any default which from k on, demands application, will eventually be applied.
This is the fairness condition from concurrent programming.
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A systematic view on closed and successful processes
The process of finding an closed and successful process can be represented by a
kind of (search) tree.

Definition 3.7 (Process tree)
Let T = (W, D) be a default theory. A process tree is tree G = (V , E), s.t. all nodes
v 2 V are labeled with two sets of formulas:

• an In-set In(v) and
• an Out-set Out(v).

The root of G is labeled with Th(W ) as In-set and ; as Out-set.

The paths of a process are the paths in G starting at the root. A node v is expanded
if In(v)\Out(v) = ;, otherwise it is marked "failed" and is a leaf of the process tree.

If v is expanded it possesses for each default � = ' : 1,..., n
� one successor node

w that
• does not appear on the path from the root node to v and
• is applicable to In(v).
• is connected to v by a edge labeled with �.
• is labeled with Th(In(v) [ {�}) and Out(v) [ {¬ 1, . . . ,¬ n}.
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Subsection 3.3

Original semantics of default logics

• original definition by Ray Reiter
• fixed point based, not constructive
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Consistency w.r.t. to what?

When applying defaults we need to ensure consistency. But consistency w.r.t. to
which theory?

We consider again Example 3.2:
T = (W, D) with W = {green, ADACmember} and D = {�1, �2}, where

�1 =
green : ¬likesCars

¬likesCars
and �2 =

ADACmember : likesCars
likesCars

Consistency w.r.t. to alone W is not enough.
Solution by Reiter: Use a theory that plays the role of a context or belief set. Check
consistency against this context.

A formalization of this idea:
A default � = ' : 1,..., n

� is applicable to a deductively closed set of formulas F
w.r.t. belief set E (the context) iff ' 2 F and ¬ 1 62 E, . . . ,¬ n 62 E (each  i is
consistent with E).
Note that the concept “� is applicable to E” is so far a special case where E = F .

TU Dresden, WS 2017/18 Introduction to Nonmonotonic Reasoning Slide 55



Which context to use?

Observation:
If a default has been applied to a belief set E, a formula has been derived and is part
of the knowledge base. Therefore it should be believed, i.e. become an element of
belief set E.
On the other hand, E should contain only formulas that can be derived from the
axioms in W by default application.

Definition 3.8 (Closure under a set of defaults w.r.t. a
belief set)
Let D be a set of defaults and F a deductively closed set of formulas F .
F is closed under D w.r.t. belief set E iff, for every default � 2 D that is applicable to
F w.r.t. belief set E, its consequent � is also contained in E.

Lemma 3.9
Let E0 ✓ E and F be a set of formulas closed under some set of defaults D w.r.t. E0.
Then F is closed under D w.r.t. E.

Proof: exercise
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Extension — original semantics

Definition 3.10 (⇤T (E), extension)
Given T = (W, D) and a set of formulas E. Let ⇤T (E) be the smallest5 set of
formulas that is

• closed under deduction, i.e. contains all conclusions
• closed under D w.r.t. E.

E is an extension of T , iff E = ⇤T (E).

Intuition:
• ⇤T (E) contains all formulas that are sanctioned by T w.r.t. E.
• E is an extension, iff by the use of E as a belief set, exactly the formulas in E

will be obtained from default application.

Observe: one first needs to guess E and then check whether the fixed-point
equation is fulfilled.

5
i.e. has smallest number of elements
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Are the two definitions equivalent?

Theorem 3.11
Let T = (W, D) be a default theory.
E is an extension of T (according Definition 3.5) iff E = ⇤T (E).

Proof: blackboard
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Minimality of Reiter’s extensions

Reiter’s characterization fulfills the desirable properties of an extension:

• include the set W of facts: E includes W .
• deductively closed: E is deductively closed
• closed under the application of the defaults: E is closed under D w.r.t. E

Claim: E is minimal w.r.t. these properties.
If E0 is an extension and E0 ✓ E, then E0 is closed under D w.r.t. E (by Lemma 3.9).
By definition, E = ⇤T (E) ✓ E0 and thus E0 = E.

Corollary 3.12 (Minimality of extension)
If, for two extensions E and E0 of a default theory T , E0 ✓ E, then E0 = E.
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Properties of extensions

Theorem 3.13 (Consistency preservation)
A default theory T = (W, D) has an inconsistent extension iff W is inconsistent.

Proof: Exercise

Corollary 3.14
If a default has an inconsistent extension E, then it is its only extension.

Theorem 3.15
Let T = (W, D) be a default theory s.t. the set
M = W [ { 1 ^ · · · ^  n ^ � | ' : 1,..., n

� is a default in D} is consistent. Then T
has exactly one extension.

Proof: blackboard
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Nonmonotonic nature of Default logic

Nonmonotonic behavior may appear when the default theory is changed!

Example 3.16 (Changing the defaults)
Let Tex(W, D) be a default theory with W = ; and D = { true : a

a }.
Tex has exactly one extension: E = Th({a}).

• �1 = true : b
¬b . Then (W, D [ {�1}) has no extensions.

• �2 = b : c
c . Then (W, D [ {�2}) has E as only extension.

• �3 = true :¬a
¬a . Then (W, D [ {�3}) has two extensions: E and Th({¬a}).

• �4 = a : b
b . Then (W, D [ {�4}) has the two extensions: Th({a, b}).
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Nonmonotonic nature of Default logic

Nonmonotonic behavior may appear when the default theory is changed!

Example 3.17 (Changing the facts)
Let Tex(W, D) be a default theory with W = ; and D = {�1, �2, �3, �4, �5} with

�1 =
true : a,¬c

a
, �2 =

a : b,¬c
b

, �3 =
true : ¬a, c

c
, �4 =

d : e
e

, �5 =
f : g
¬g

Tex has two extensions: E1 = Th({a, b}) and E2 = Th({c}). Consider
• W1 = {f}. (W1, D) has no extensions.
• W2 = {¬a}. (W2, D) has the only extension Th({¬a, c}).
• W3 = {¬a,¬c, d}. (W3, D) the only new extension: Th({¬a,¬c, d, e}).
• W4 = {d}. (W4, D) the two extension: Th(E1 [ {d, e}) and Th(E2 [ {d, e}).
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Subsection 3.4

Normal default logics
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Normal defaults and normal default theories

Definition 3.18 (Normal defaults, normal default theory)
A default is normal iff its consequent is its only justification. They have the form

' :  

 
.

A default theory T = (W, D) is normal iff all defaults in D are normal.

Normal defaults
• have always extensions
• rule out "pathological cases" such as: true : a

¬a
• have limited expressivity: no interactions among defaults

A normal default theory
draws the conclusion  when ' is known and it is consistent to conclude  .
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Processes in normal default theories

Lemma 3.19
Each process of a normal default theory is successful.

Proof: blackboard

Expanding ⇧ in a fair way, a closed and successful process is obtained. Thus we
have established:

Theorem 3.20 (Existence of extensions)
Normal default theories always possess extensions. Every finite process ⇧ may be
expanded to a closed process ⇧0.
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Default theories are not semi-monotonic

Semi-monotonicity
A class of default theories, is semi-monotonic iff the addition of default rules never
eliminates, but extends or adds, new extensions.

Consider the general default theories:

T1 = (;, D1) with D1 =

⇢
true : ¬C

D

�
and

T2 = (;, D2) with D2 =

⇢
true : B

C
,

true : ¬C
D

�

The theory T1 has one extension E1 = Th({D}).
However, the only extension of T2 is E2 = Th({C}).
E1 fails to be an extension of T2 since B is consistent with E2, hence true :B

C is
applicable and eliminating E2 as possible extension.

Since we have D1 ✓ D2, but E1 6✓ E2, default logic is not semi-monotonic.
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Properties of normal default theories

Theorem 3.21 (Semi-monotonicity)
Let T = (W, D) and T 0 = (W, D0) be normal default theories s.t. D ✓ D0. Then each
extension of T is contained in an extension of T 0.

Proof: blackboard

Theorem 3.22 (Orthogonality of extensions)
Let E and F be different extensions of a normal default theory T . Then E [ F is
inconsistent.

Proof: blackboard
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Limitations of normal default theories

Are normal default theories expressive enough to model common sense reasoning?

Statements such as:
• “Typically birds fly”
• “Assume the accused is innocent unless you know otherwise”

can be captured by normal defaults:

bird(x) : flies(x)
flies(x)

accused(x) : innocent(x)
innocent(x)

Often a default rule on its own is normal, but problems arise when several defaults
have to interact in a theory.
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Limitations of normal default theories—example

Consider the example of a normal default theory:

T =

✓
{dropout(bill)},

⇢
dropout(x) : adult(x)

adult(x)
,

adult(x) : employed(x)
employed(x)

�◆

T has the single extension Th({dropout(bill), adult(bill), employed(bill)}). But it is
counterintuitive to assume that Bill is employed!

How to prevent the application of the 2. default, if X is a dropout?

adult(x) : employed(x) ^ ¬dropout(x)
employed(x)

But this is no longer a normal default!
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Semi-normal Defaults

A default is a semi-normal default, if it has the form � : ^�
 .

A default theory T = (W, D) is semi-normal, if all defaults in D are semi-normal.

Do semi-normal default theories always have extensions? No.

Consider the example: T = (W, D), with W = ; and

D =

⇢
true : ¬q ^ p

p
,

true : ¬r ^ q
q

,
true : ¬p ^ r

r

�

Only some classes of restricted semi-normal theories do always have extensions.
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Semi-normal Default Theories

Semi-normal default theories do not have . . .

• Semi-monotonicity

Consider:
T = (W, D) with W = ; and D =

n
true :¬q^p

p

o
and

T 0 = (W, D0) with W = ; and D0 =
n

true :¬q^p
p , true :¬r^q

q

o
.

We have E = Th({p}) and E = Th({q}) as the extensions of the theories,
but E 6✓ E0.

• Success of all processes

T 0 has a failed process.

• Orthogonality of extensions

Consider:
T 00 = (W, D) with W = ; and D =

n
true : p^q

q , true :¬q^¬p
¬p

o
.

T 00 has two extensions: E1 = Th({q}) and E2 = Th({¬p}),
but E1 [ E2 is consistent.
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Reasoning in Default Logics

Classical reasoning problems of default theories are:

• deciding whether a default theory has an extension
• deciding whether a given formula is element of all extensions.

(“cautious reasoning” or “skeptical reasoning”)
• deciding whether a given formula is element of one extension.

(“brave reasoning” or “credulous reasoning”)
choosing a different extension, may yield different consequences.
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Example: reasoning in Default Logics

Example 3.23 ( Reprise of Example 3.17)
Let Tex = (W, D) be a default theory with W = {d} and D = {�1, �2, �3, �4, �5} with

�1 =
true : a,¬c

a
, �2 =

a : b,¬c
b

, �3 =
true : ¬a, c

c
, �4 =

d : e
e

, �5 =
f : g
¬g

Tex has two extensions: E1 = Th({d, e, a, b}) and E2 = Th({d, e, c}).

Formula (d ^ e) is a consequence for Tex under cautious reasoning.

Formula c is a consequence for Tex under brave reasoning.
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Recap on complexity classes

Complexity class with oracle admits the use of a subroutine “at no cost”.

Polynomial hierarchy: the classes ⇧P
k , ⌃P

k and �P
k are defined as follows:

P = ⌃P
0 = ⇧P

0 = �P
0

and for all k � 0:

⌃P
k+1 = NP⌃P

k ⇧P
k+1 = co-⌃P

k+1 �P
k+1 = P⌃P

k

Note: ⌃p
1 = NP, ⇧P

1 = co-NP and �P
k+1 = P.
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Complexity of reasoning in default theories

Typically, default reasoning is harder than classical reasoning.

Computability / complexity results for different classes of default theories:
• FOL default theories: undecidable

(since classical reasoning is already undecidable)

Reasoning in default theories is not even semi-decidable, since computing an
extension requires FOL consistency tests which are semi-decidable.

• normal default theories: undecidable
• propositional default theories:

– deciding existence of an extension: ⌃P
2 -complete

– brave reasoning is ⌃P
2 -complete

– cautious reasoning is ⇧P
2 -complete
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