
Section 4

Autoepistemic Logic

Subsection 4.1

Introducing autoepistemic logic
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Introducing autoepistemic logic: an example
autoepistemic: reflection upon self-knowledge

Idea: formalism to model how an agent forms her own belief sets
and how to reason about it.

Example:
Are the Stones playing in Newcastle next week?
No, because otherwise I would have heard about it.

Observations:
• no definite knowledge that the Stones do not give a concert in Newcastle

next week.
• incomplete knowledge and negative answer is rather a conjecture

New knowledge: the Stones are giving a concert in Newcastle next week!

Observations:
• old conclusion by introspection is no longer valid and must be

revised—nonmonotonic reasoning!
• long-term knowledge ("If something important is to happen in my city, then I

would know about it") has not changed.
• what has changed is that answer is based on fact, not on introspection
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Introducing autoepistemic logic: another example

Indicate "believed knowledge" by a modal operator L applied to FOL sentences.

L' means intuitively: "I know '".

Capture:
• Prof Jones is a university professor and thus normally teaches.
• If I do not believe that Dr. Jones does not teach, then Dr. Jones does teach

by the modal formula:

LprofJ ^ ¬L¬teachesJ �! teachesJ

The concert example can be captured by:
• concert �! Lconcert ("If a concert takes place, then I know about it. ")
• ¬Lconcert ("I don’t know that a concert takes place. ")
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Towards syntax and semantics

The L-operator can appear nested in formulas: LL' or L¬Lq or ¬L(p _ Lq)

The meaning of autoepistemic logic is given in terms of expansions, i.e., pieces of
knowledge defining "world views" compatible with and based on the given
knowledge.

Expansions are stable, if
• if fact ' is in an expansion, then so is L'
• if fact ' is not in an expansion, then ¬L' is in the expansion

TU Dresden, WS 2017/18 Introduction to Nonmonotonic Reasoning Slide 79



Syntax of autoepistemic logic

Definition 4.1 (Autoepistemic formulas, AE-formula)
Autoepistemic formulas (AE-formulas) are the smallest set satisfying the following:

• each closed FOL formula is an AE-formula
• if ' is an AE-formula, then L' is an AE-formula
• if ' and  are AE-formulas, then so are the following:

– ¬'
– (' ^  )
– (' _  )
– (' �!  )

The set of all AE-formulas is denoted by For .
An autoepistemic theory (AE-theory) is a set of AE-formulas.
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Syntax of autoepistemic logic—schema

Sometimes it is convenient to use open FOL formulas in the scope of the
L-operator. In such cases the AE-formula reads as a schema, i.e., a collection of
ground instances.

E.g.:

german(X ) ^ ¬L¬drinksBeer(X ) �! drinksBeer(X ),
german(bob), german(lisa)

is read as the autoepistemic theory:

german(bob) ^ ¬L¬drinksBeer(bob) �! drinksBeer(bob)
german(lisa) ^ ¬L¬drinksBeer(lisa) �! drinksBeer(lisa)

german(bob), german(lisa)
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Some auxiliary notions—sub

Sub-formula
Let ' be an AE-formula. The set of subformulas of ' (sub(')) is defined as:

• sub(') = ; for FOL formula '
• sub(¬') = sub(')
• sub(' _  ) = sub(' ^  ) = sub(' �!  ) = sub(') [ sub( )
• sub(L') = {'}

Let T be an AE-theory. The set of subformulas of T is defined as

sub(T ) =
[

'2T

sub(').

Note: we do not go further into the structure of a formula, after the out-most
occurrence of L.

For example: If T = {L¬Lq, L(Lp ^ r),¬Lr, s}, then sub(T ) = {¬Lq, (Lp ^ r), r}
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Some auxiliary notions—degree, kernel

degree
The degree of an AE-formula ' (degree(')) is the maximal depth of L-nestings that
occurs in '.

Let T be an AE-theory, then Tn denotes the set of AE-formulas in T with degree
less or equal n.

For example: degree((¬L¬L(p ^ Lq))) = 3.

kernel
The kernel of an AE-theory T is defined as the set of all FOL formulas that are
elements of T (denoted T0).

For example: if T = {p,¬Lq,¬Lq �! s, L¬Lr, r}, then T0 = {p, r}.
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Normal form for autoepistemic formulas

Definition 4.2 (Normal form)
An AE-formula is in normal form, if it has the form

'1 ^ '2 ^ · · · ^ 'n,

where each 'i has the form

� _ L�1 _ · · · _ L�p _ ¬L�1 _ · · · _ ¬L�q

with a FOL formula �.

Each AE-formula ' can be transformed into an equivalent AE-formula (nf(')) in
normal form, such that degree(') = degree(nf(')).
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Semantics of autoepistemic logics

Definition 4.3 (AE-interpretation)
An autoepistemic interpretation I over a signature ⌃ provides

• a non-empty domain dom(I)
• an interpretation fI for each function symbol f 2 ⌃ (as in FOL)
• an interpretation rI for each predicate symbol r 2 ⌃ (as in FOL)
• a truth value (L')I for every AE-formula L'.

As in FOL, I |= ' indicates that an AE-interpretation I satisfies an AE-formula (is an
AE-model of) '.

A formula logically follows from a set M of AE-formulas (M |= ') iff ' is valid in all
AE-models of M.

For a set of AE-formulas M, Th(M) is the set of AE-formulas that logically follow
from M.
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Remarks on the semantics

In Def. 4.3 the validity of ' in I and the validity of L' in I are unrelated:
L' is treated as a new atom (a 0-ary predicate) and thus independent of '.

Intuition:
' expresses truth of ', whereas L' expresses belief in (/knowledge of) '.

This choice of semantics admits to
“believe in something false”, or “not to believe in something true”.

The following alternative definition of the semantics captures this observation.
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Algebra-based semantics of autoepistemic logics

An algebra with a belief set is a pair (B, Bel), where
• B is a first order interpretation and
• Bel is a set of AE-formulas.

Validity of AE-formulas in (B, Bel) is defined as:
• (B, Bel) |= ' iff B |= ' for a closed FO formula '
• (B, Bel) |= ¬' iff (B, Bel) 6|= '

• (B, Bel) |= (' _  ) iff (B, Bel) |= ' or (B, Bel) |=  

• (B, Bel) |= (' ^  ) iff (B, Bel) |= ' and (B, Bel) |=  

• (B, Bel) |= (' �!  ) iff (B, Bel) |= ' implies (B, Bel) |=  

• (B, Bel) |= L' iff ' 2 Bel.
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Relationship between the two semantics

The semantics are equivalent.

1. From a given AE-interpretation I, we define an algebra with a belief set
(B, Bel) as follows:

– the domain of B and the interpretation function of predicate and
function symbols are same as in I.

– Bel = {' | (L')I = true}

2. From a given algebra with a belief set (B, Bel), we define an AE-interpretation
I as follows:

– the domain of I and the interpretation function of predicate and
function symbols are same as in B.

– (L')I = true iff ' 2 Bel.

Convention: We use the two semantics interchangeably.
By “an AE-interpretation with belief set Bel” we mean Bel = {' | (L')I = true}.

We define “' follows from AE-theory T w.r.t. belief set E” (denoted T |=E ') as '
is valid in every AE-model of T with belief set E.
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Subsection 4.2

Expansions of autoepistemic theories
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Towards expansions — considerations

What knowledge would an agent with introspection have
given a set of facts (i.e. AE-formulas) T ?

The agent’s knowledge would be a set E of AE-formulas that
• includes T
• allows introspection
• is grounded in T

(meaning: the knowledge in E must be reconstructable from:
T , belief in (knowledge of) E, and non-belief in (non-knowledge of) E)
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Expansion

Let T and E be sets of AE-formulas. We define the following sets
• LE = {L' | ' 2 E}
• ¬LEC = {¬L |  62 E}
• ⌦T (E) = {' | T [ LE [ ¬LEC |= '}

Definition 4.4 (Expansion)
Let T and E be sets of AE-formulas.

• E is T -sound iff E ✓ ⌦T (E)
• E is T -complete iff ⌦T (E) ✓ E
• E is an expansion of T iff E = ⌦T (E)

Intuition:
The agent decides to believe in a set of AE-formulas T .
Based on this, a set of AE-formulas can be deduced from T and the beliefs adopted
(LE [ ¬LEC ). If the deduced set is exactly the set of beliefs E, then E is an
expansion.

TU Dresden, WS 2017/18 Introduction to Nonmonotonic Reasoning Slide 91



Alternative characterization of expansions

Observation:
AE-models of T [ LE [ ¬LEC are just the AE-models of T with belief set E!

Thus we obtain an alternative characterization of expansions.

Corollary 4.5
E is an expansion of an AE-theory T iff E = {' | T |=E '}.
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Example 4.6
Consider the AE-theory T1:

{german ^ ¬L¬drinksBeer) �! drinksBeer, german}

This AE-theory has one expansion.

The formula ¬drinksBeer cannot be derived before ¬L¬drinksBeer is contained in
the expansion.

The only expansion of T1 has the kernel: Th({german, drinksBeer})

If we extend T1 by adding:

{(eatsPizza ^ ¬LdrinksBeer) �! ¬drinksBeer, eatsPizza}

then the theory has two expansions:
• kernel of the first expansion: {geman, eatsPizza, drinksBeer}
• kernel of the second expansion: {geman, eatsPizza,¬drinksBeer}
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Subsection 4.3

Stable sets and their properties
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Stable sets — origin

• Stable belief sets were introduced by Robert Stalnaker in the early ‘80s
• proposed as a formal representation of the epistemic state of an ideally

rational agent, with full introspective capabilities.
• Assumes a propositional language, endowed with a modal operator ⇤'

interpreted as “' is believed”
• a set of formulas is a stable set if it is “stable” under classical inference and

epistemic introspection
• influenced research on AE logics and nonmonotonic logics in general
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Stable sets — definition

Definition 4.7 (stable sets)
Let E be a set of autoepistemic formulas. E is called stable iff

• E is deductively closed, i.e. E = Th(E),
• ' 2 E implies L' 2 E, for all AE-formula ', and
• ' 62 E implies ¬L' 2 E, for all AE-formula '

Note: Expansions are stable sets by definition.
Thus they inherit all the properties we show for stable sets.
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Stable sets and expansions

Theorem 4.8
For an AE-theory T and a set of AE-formulas E the following statements are
equivalent:

1. E is an expansion of T

2. E is stable, T ✓ E and is T -sound.

Proof: blackboard
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Entailment and stable sets

Lemma 4.9
For a stable set E and an AE-formula ' the following statements are equivalent:

a) E |=E '

b) E |= '

c) ' 2 E

For a FOL formula ', the statements a)-c) are equivalent to

d) E0 |= '

Proof: blackboard
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Stable sets are determined by their kernels

Stable sets are uniquely determined by their objective subsets, i.e. their kernels.

Theorem 4.10
For stable sets E and F, E0 = F0 implies E = F.

Proof: blackboard
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Existence of stable sets

How can expansions be computed? A first hint

Theorem 4.11
Let T be a first order theory. Then there is a stable set E with E0 = T .

Proof: blackboard
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Properties of stable sets

Theorem 4.12 (Orthogonality of stable sets)
Let E and F be different stable sets. Then E [ F is inconsistent.

Proof: blackboard

Theorem 4.13
If E is a stable set then it is an expansion of E0.

Proof: blackboard

TU Dresden, WS 2017/18 Introduction to Nonmonotonic Reasoning Slide 101



Subsection 4.4

Computing expansions of AE-theories
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Considerations

To achieve nonmonotonic behavior w.r.t. AE-theories, formulas (“conjectures”) can
be added to the set of believes that need not be added.

What makes computing expansions difficult?
• nested occurrences of the L-operator
• infinitely many conjectures. How to compute all expansions?

How to remedy this?
• Nested occurrences of L-operator: concentrate on potential kernels of

expansions (Theorem 4.10).
• by Coincidence Lemma: it suffices to consider beliefs or non-beliefs in

formulas from sub(T ) to determine the expansions of T .

Only those formulas with L-operator play a role in the interpretation of T .
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Overview of the computation procedure for expansions

Compute expansions of AE-theories by:

• partition sub(T ) into:
– E(+): set of beliefs
– E(�): set of non-beliefs

• Compute the corresponding kernel E(0) of a potential expansion,
using T , beliefs in E(+) and non-beliefs in E(�).

• Check whether the stable set determined by E(0) is indeed an expansion
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Example – Expansions of AE-theories without L-nestings

Example 4.14
Let T = {Lp �! p}.
Since Lp �! p is the only AE-formula occurring (at top-level) of T , sub(T ) = {p}.
There are two partitions of sub(T ) = {p}.

E(+) E(�) E(0) E(+) ✓ E(0)? E(�) \ E(0) = ;? expansion?
{p} ; Th({p}) yes yes yes
; {p} Th(;) yes yes yes

• E(0): set of first order formula that follow from T .
• condition E(+) ✓ E(0):

test whether everything that the agent believes in is in E(0).
• condition E(�) \ E(0) = ;:

ensures that E(0) does not include non-beliefs of the agent
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Procedure for computing expansions for AE-theories
without L-nestings

Compute expansions no L-nesting (T )

1: Expansions := ;
2: for all partitions E(+) and E(�) of sub(T ) do
3: E(0) := {' 2 For0 | T [ LE(+) [ ¬LE(�) |= '}
4: if E(+) ✓ E AND E(�) \ E = ; then
5: Expansions := Expansions [ {E(0)}
6: end if
7: end for
8: return Expansions
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Example – Expansions of general AE-theories

Example 4.15
Let T = {Lp �! p,¬L¬Lp}, with sub(T ) = {p,¬Lp}.
Now the partitions of sub(T ) are no longer first order formulas!

E(+) E(�) E(0) E(+) ✓ E? E(�) \ E = ;? expansion?
{p,¬Lp} ; For0 yes yes yes

{p} {¬Lp} Th({p}) yes yes yes
{¬Lp} {p} For0 yes no no

; {p,¬Lp} Th(;) yes no no

• Line 1: E(0) is inconsistent, since L¬Lp follows from LE(+), but ¬L¬Lp 2 T .
• Line 2: T [ LE(+)[¬LE(�) = {Lp �! p,¬L¬Lp, Lp}, thus E(0) = Th({p}).

Since p 2 E and E is stable and consistent, we have Lp 2 E and thus ¬L 62 E.
• Line 3: T [ LE(+) [ ¬LE(�) contains both L¬Lp and ¬L¬Lp, thus

E(0) = For0

• Line 4: T [ LE(+) [ ¬LE(�) = {Lp �! p,¬L¬Lp,¬Lp}. From p 62 E follows
¬Lp 2 E and thus E(�) \ E 6= ;
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Procedure for computing expansions for general AE-theories

Compute expansions (T )

1: Expansions := ;
2: for all partitions E(+) and E(�) of sub(T ) do
3: E(0) := {' 2 For0 | T [ LE(+) [ ¬LE(�) |= '}
4: Let E be the unique stable set with kernel E(0)
5: if E(+) ✓ E AND E(�) \ E = ; then
6: Expansions := Expansions [ {E(0)}
7: end if
8: end for
9: return Expansions
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Towards the correctness proof

Lemma 4.16 (Preservation Lemma)
Let E be a stable set and T an AE-theory.
If E0 = {' 2 For0 | T [ LE [ ¬LEC |= '}, then E = {' 2 For | T [ LE [ ¬LEC |= '}.

Proof: blackboard

Lemma 4.17 (Coincidence Lemma)
Let T be an AE-theory. Consider sets of AE-formulas E(+), E(�), F(+), and F(�)
with the following properties:

• sub(T ) ✓ E(+) [ E(�) and E(+) \ E(�) = ; and
sub(T ) ✓ F(+) [ F(�) and F(+) \ F(�) = ;

• E(+) \ sub(T ) = F(+) \ sub(T )

• E(�) \ sub(T ) = F(�) \ sub(T ).

Then the same first order formula follow from
T [ LE(+) [ ¬LE(�) as from T [ LF(+) [ ¬LF(�)

Proof: blackboard
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Correctness proof

Theorem 4.18
Let T be an AE-theory and let sub(T ) be partitioned into the disjoint sets E(+) and
E(�). We consider the following steps:

1. Compute E0 = {' 2 For0 | T [ LE(+) [ ¬LE(�) |= '} and
let E be the unique stable set with kernel E0.

2. Check whether E(+) ✓ E and E(�) \ E = ;.

Then the following holds:

a) If the check in Step 2. is positive, then E is an expansion of T .

b) Conversely, for every expansion E of T there is a decomposition of sub(T )
into E(+) and E(�) such that

– E(0) = E0 and
– the check in Step 2 is positive.

Proof: blackboard
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Subsection 4.5

Embedding Default Logic into AE-Logic
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Default logic vs. autoepistemic logic

How to embed default logic into autoepistemic logic?

• Default logic: uses rules
AE-logic: uses introspection

• With L' means "' is known", we get:

german : drinksBeer
drinksBeer vs. Lgerman ^ ¬L¬drinksBeer �! drinksBeer

What is the semantic relationship between the two formalisms?
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Translating default theories to AE-theories

Idea: express consistency of justifications  by ¬L¬ ("¬ is not known")

Definition 4.19 (trans())
Let � = ' : 1,..., n

� be a default rule. We define the translation function for default
rules as follows:

trans(�) = L' ^ ¬L¬ 1 ^ · · · ^ ¬L¬ n �! �.

Let T = (W, D) be a default theory. We define the translation function for default
theories as follows:

trans(T ) = W [ {trans(�) | � 2 D}.

Does this translation preserve the semantics?
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How to compare the semantics?

Recall:
• Extension of a default theory: FO formulas only
• Expansion of a AE-theory: FO formulas possibly in scope of L-operator

Approach for comparison:

Compare extensions of default theory T with kernels of expansions of translated
formulas trans(T ).
—such kernels are unique (see Section 4.3) and FO formulas

Plan for this section:
In the following we want to derive conditions under which extensions of a default
theory and expansions (of the translated default theory coincide).

TU Dresden, WS 2017/18 Introduction to Nonmonotonic Reasoning Slide 114



Example – difference of expansions and extensions

Example 4.20
Consider the default theory Tex1 = (W, D) with W = ; and D =

n
p : true

p

o

The translation is trans(Tex1) = {Lp ^ ¬Lfalse �! p}

The only extension of Tex1 is Th(;),
but trans(Tex1) has two expansions: Th(;) and Th({p}).

The second expansion comes from the self-referential nature of expansions!

E = {' | T [ LE [ ¬LEC |= '}

If it is decided to believe in p (and not in false), then p can be derived!
Whereas in default logic p needs to be known by other information!
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Restricting expansions: minimality of the kernel

Definition 4.21
Let T be an AE-theory and E an expansion of T . E is an AE-minimal expansion of T
iff there is no expansion F of T s.t. F0 ⇢ E0.

The idea is to concentrate on those expansions (that include the theory and) that
cannot be “generated” from a smaller kernel in size.

Does it help?
The AE-theory trans(Tex1) from Example 4.20 has one AE-minimal expansion with
the kernel: Th(;) which is the extension of Tex1.
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Example: extension and AE-minimal expansion

Example 4.22
Consider the default theory Tex2 = (W, D) with W = ; and D =

n
true :¬p

q , p : true
p

o

which has the single extension Th({q}).

The AE-theory trans(Tex2) = {Ltrue ^ ¬L¬¬p �! q, Lp ^ ¬Lfalse �! p}
has two expansions:

• bE with kernel bE0 = Th({q}) and

• bF with kernel bF0 = Th({p})

Both expansions are AE-minimal. But the set of expansions does not coincide with
the extension of Tex2.

AE-minimality still admits to deliberately believe in Lp.
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Restricting expansions: grounding expansions

Addressing groundedness of expansions:
avoiding arbitrary formulas in expansions by restricting self-referentiality.

Definition 4.23 (SS-minimal)
Let T be an AE-theory and E an expansion of T .
E is an SS-minimal expansion of T iff there is no stable set F s.t. T ✓ F and F0 ⇢ E0.

SS-minimality implies AE-minimality, but the converse does not hold.

Restricting AE-interpretations to those with stable belief sets:

Definition 4.24
Let SS denote the class of all stable sets.
We define T |=SS ' iff T |=E ' for all stable sets E.
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FO self-referentiality of expansions

Since |=SS is stronger than |=, it allows us to weaken the premises used in the
definition of an expansion without losing information.

Lemma 4.25
A set of AE-formulas E is an expansion of an AE-theory T iff
E = {' | T [ LE0 [ ¬L(For0 \ E0) |=SS '}.

Proof: exercise

Intuition of Lemma 4.25 is that the self-referentiality in the definition of expansions
has been restricted to FO beliefs.
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Moderately grounded expansions

Observation:
Since the only beliefs admitted are those in T , it is admissible to replace E0 by T in
Lemma 4.25.

Definition 4.26
E is a moderately grounded expansion of an AE-theory T iff
E = {' | T [ LT [ ¬L(For0 \ E0) |=SS '}.

Lemma 4.27
Let T be an AE-theory and E a set of AE-formulas.
E is a moderately grounded expansion iff E is a SS-minimal expansion of T .
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Restricting expansions: grounding expansions

Do SS-minimal expansions and extensions coincide?

Consider the default theory Tex2 from Example 4.22 again.
Recall: the expansions bE with kernel Th({q}) and bF with kernel Th({p}) are
AE-minimal.

They are also SS-minimal:

• Let S be a stable set with S ✓ T . Suppose S0 ⇢ bF0,
then p 62 S, ¬¬p 62 S, thus ¬L¬¬p 2 S and so q 2 S and q 2 S0.
But then S0 6⇢ bF0, which is a contradiction.

• Suppose S0 ⇢ bE0, then p 62 S and ¬¬p 62 S,
therefore ¬L¬¬p 2 S, and so q 2 S and q 2 S0.
Since S is deductively closed, S0 is deductively closed, too.
Since q 2 S, S0 is nor a proper subset of bE0, which is a contradiction.
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Analyzing Example 4.22

Recall: trans(Tex2) = {Ltrue ^ ¬L¬¬p �! q, Lp ^ ¬Lfalse �! p} and
its expansion bF has kernel bF0 = Th({p}).

How was p derived from
�
trans(Tex2) [ L(trans(Tex2)) [ ¬L(For0 \ bF0)

�
?

Let (I, S) be an AE-model of (trans(Tex2) [ L(trans(Tex2)) [ ¬L(For0 \ bF0)) with
stable set S. Then L(¬L¬¬p �! q) 2 S.

By stability and consistency of S: ¬L¬¬p �! q 2 S. So, L¬¬p 2 S or {q, Lq} ✓ S.

Since q 62 bF0, (I, S) |= ¬Lq and thus q 62 S holds.

We can conclude: L¬¬p 2 S, thus ¬¬p 2 S, p 2 S and (I, S) |= Lp.

Using (I, S) |= Lp ^ ¬Lfalse �! p and (I, S) |= ¬Lfalse, we finally get (I, S) |= p.

Note that L¬¬p was obtained before ¬¬p (self-referential still!).
Formula L¬¬p was obtained from rule ¬L¬¬p �! Lq. It was applied using
contraposition, i.e. ¬Lq �! L¬¬p.
But, the corresponding default true :¬p

q can only be used from top to bottom!
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Restricting expansions: enforcing unidirectional application

Addressing the possibility to apply AE-implications in both directions.

AE-formula in default normal form are AE-formulas
L' ^ ¬L¬ 1 ^ · · · ^ ¬L¬ n �! �, where ', 1, . . . n,� are FO formulas.6

Definition 4.28
Let T be a AE-theory consisting of FO formulas and AE-formulas in default normal
form and let E be an expansion of T .

T E denotes the set of AE-formulas L' ^ ¬L¬ 1 ^ · · · ^ ¬L¬ n �! � in T such that
¬ i 62 E (for 1  i  n).

E is strongly grounded in T iff the following holds:

E = {' | T E [ LT E [ ¬L(For0 \ E0) |=SS '}.

For a strongly grounded expansion E it is impossible to obtain L i from not knowing
the consequent �!

6They are the translations of defaults into AE-logic.
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Strongly grounded implies moderately grounded

Lemma 4.29
Let E be a strongly grounded expansion of an AE-theory T .
Then E is a moderately grounded (and thus SS-minimal) expansion of T .

Proof: blackboard.
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Difference between expansions and extensions

To sum up:
Expansions vs. extensions

1. Expansions are not necessarily minimal w.r.t. kernel inclusion. Extensions
cannot be subsets of other extensions (of the same default theory).

2. Expansions may not be “well-grounded” in the given knowledge; can include
AE-formulas that it was decided to believe in.

3. AE-formulas may be used in both directions, whereas default rules are strictly
unidirectional.
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Extensions and strongly grounded expansions coincide

Theorem 4.30
Let T = (W, D) be a default theory.
For every extension E of T there is a strongly grounded expansion F of trans(T )
such that E = F0.
Conversely, the kernel of every strongly grounded expansion of trans(T ) is an
extension of T .
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Computational complexity of reasoning in autoepistemic
logics

• For closed FOL formulas in a logic L holds: if satisfiability in L is decidable,
then so are nonmonotonic reasoning tasks for L.

• deciding whether an AE-theory has a stable expansion: ⌃P
2 -complete

• credulous reasoning is ⌃P
2 -complete

cautious reasoning is ⇧P
2 -complete
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