
Section 5

Circumscription

Subsection 5.1

Introducing Circumscription
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Circumscription

• developed by John McCarthy, refined by Vladimir Lifschitz in the eighties
• circumscription does not extend the underlying logic syntactically to provide

nonmonotonic reasoning—unlike Default logic or autoepistemic logic
• often circumscription uses second order logic

(we concentrate here on FOL for simplicity)
• simple form of circumscription: uses FOL theory T , a set of designated

formulas circ(T ) and classical reasoning
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Introductory example

Consider the FOL theory T :

8X (bird(X ) ^ ¬abnormal(X ) �! flies(X )) ’All birds that are not abnormal fly.’
bird(tweety) ‘Tweety is a bird.’

Wanted consequence: flies(tweety)

In classical FOL this does not follow, since ¬abnormal(tweety) cannot be derived
from T . (Tweety could be abnormal.)

Idea of circumscription:
minimize the set of objects for which the predicate abnormal is true to those
objects a for which there is definite information that abnormal(a) is true.
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Introductory example cont.

We add 8X¬abnormal(X ) to the set circ(T ).
Now, from T [ circ(T ) it follows that flies(tweety).

By adding 8X¬abnormal(X ) to circ(T ), all models of T that have non-empty
interpretations of abnormal get eliminated and only models with minimal
interpretations of abnormal remain.

Approach of circumscription:
minimize the interpretations of certain predicates, thereby eliminating many models
of T and thus enabling more logical conclusions.
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Subsection 5.2

Predicate circumscription
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Replacement of predicate symbols

Circumscription minimizes the interpretation of certain predicates.
We consider the minimization of one predicate first.

Example 5.1
Given the formula isBlock(a) ^ isBlock(b), we want to minimize the predicate
isBlock and thus expect a and b to be the only blocks.
Essentially, formula (X = a _ X = b) should replace the predicate isBlock(X ).

Definition 5.2
A predicate expression of arity n consist of a formula  and the distinguished
variables X1, . . . , Xn.

Intuitively, such expressions are possible candidates for replacing an n-ary predicate
symbol.
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Substitutions by predicate expressions

Definition 5.3
Let ' be a closed formula, p and n-ary predicate symbol, and  a predicate
expression of arity n with distinguished variables X1, . . . , Xn.

The result of substituting  for p in ' (denoted as '[p/ ]) is defined inductively:
• q(t1, . . . , tk)[p/ ] = q(t1, . . . , tk), if q is a predicate name and q 6= p.
• p(t1, . . . , tn) =  {X1/t1, . . . , Xn/tn}
• ('1 ⇤ '2)[p/ ] = ('1[p/ ] ⇤ '2[p/ ]), for ⇤ 2 {^,_,�!}
• (¬')[p/ ] = ¬('[p/ ])
• (Q X')[p/ ] = Q X ('[p/ ]), for Q 2 {8, 9}

'[p/ ] is admissible iff no occurrence of a variable of  other than X1, . . . , Xn is
replaced in the scope of a quantifier in '.

Let T be a finite first-order theory, T [p/ ] denotes the set {'[p/ ] | ' 2 T}.
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Considerations for defining circumscription

1. If a predicate expression  p is known to be ‘smaller’ than a predicate p (i.e.
 p �! p), then  p is a candidate to minimize p.

2. In Example 5.1, the result of substituting X = a _ X = b for isBlock(X ) in the
formula isBlock(a) ^ isBlock(b) is (a = a _ a = b) ^ (b = a _ b = b).
This formula is valid.

Suppose, isBlock is radically minimized and nothing is a block.
Then the result of substituting false for isBlock(X ) in the formula
isBlock(a) ^ isBlock(b) is false ^ false.

Generally, minimization of a predicate should not violate the given
information!

If  p ‘satisfies’ the given information (from formula '), then one may restrict
p in ' to  p, i.e., p is not allowed to satisfy more tuples than  p does.
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Circumscription

Definition 5.4
Let ' be a closed first-order formula containing an n-ary predicate p.
Let  p be a predicate expression of arity n with distinguished variables X1, . . . , Xn
such that '[p/ p] is admissible.

The circumscription of p in ' by  p is the following formula:
�
'[p/ p] ^ 8X1 · · · 8Xn

�
 p �! p(X1, . . . , Xn)

��

�! 8X1 · · · 8Xn
�
p(X1, . . . , Xn) �!  p

�
.

If  p can vary, then this formula is a schema called the circumscription of p in '.
The set of all formulas of the form above for varying  p is denoted Circum(', p).

A formula � is derivable from ' with circumscription of p (denoted {'} ` Circ(p)�)
iff {'} [ Circum(', p) |= �.

The generalization of these notions to finite sets of closed predicate logic formulas
is straightforward and is left as an exercise.
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Applying the definition of circumscription to Example 5.1

In Example 5.1, we have:

' =
�
isBlock(a) ^ isBlock(b)

�

 p = (X = a _ X = b)

p = isBlock(X )

Circumscription of isBlock in isBlock(a) ^ isBlock(b) yields the schema
(for general  ):

�
 (a) ^  (b)

�
^ 8X

�
 (X ) �! isBlock(X )

�
�! 8X

�
isBlock(X ) �!  (X )

�
.

The conclusion is in our case: 8X
�
isBlock(X ) �! (X = a _ X = b)

�
.

We therefore have:
{isBlock(a) ^ isBlock(b)} ` Circ(isBlock) 8X (isBlock(X ) �! (X = a _ X = b)).

Now, a and b are the only blocks!
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Example: treating missing information

Consider the formula: ' = ¬p(a).

It is impossible to derive p(t) for any term t and thus the minimization should yield
8X¬p(X ).

Circumscription of p in ¬p(a) produces the schema:

�
¬ p(a) ^ 8X

�
 p(X ) �! p(X )

��
�! 8X

�
p(X ) �!  p(X )

�
.

Since p should not be true for any argument, we chose:  p ⌘ false and get

�
¬false ^ 8X

�
false �! p(X )

��
�! 8X

�
p(X ) �! false

�
⌘ 8X

�
p(X ) �! false

�

⌘ 8X¬p(X )

as desired!
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Closed world assumption vs. circumscription

Closed world assumption (CWA) is another formalism
based on the idea of minimizing interpretations of predicates.

According to CWA, ¬p(t) is obtained for every ground term t such that
p(t) does not follow from the given knowledge.

CWA and circumscription do behave differently!

To see this, consider ' = isBlock(a) _ isBlock(b)
Expected conclusion: ‘there is one block, and it is either a or b.

1. applying circumscription:
By use of  isBlock(X ) ⌘ X = a in the circumscription schema of isBlock in '
we get: isBlock(a) �! 8X

�
isBlock(X ) �! X = a

�

Analogous formula is obtained for  isBlock(X ) ⌘ X = b.

Together with ' this yields:
8X

�
isBlock(X ) �! X = a

�
_ 8X

�
isBlock(X ) �! X = b

�

2. applying CWA:
Neither isBlock(a) nor isBlock(b) follows from ', thus ¬isBlock(a) and
¬isBlock(b) is implied. But together this yields a contradiction!

While CWA ‘misbehaves’, circumscription yields the expected result.
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Generalization to several predicates

Predicate circumscription can easily be generalized to allow minimization of several
predicates simultaneously.

For example, circumscription of p and q in ' is given by the schema:
⇣
'[p/ p, q/ q ] ^

8X1, . . . , Xn
�
 p �! p(X1, . . . , Xn)

�
^ 8Y1, . . . ,Ym

�
 q �! q(Y1, . . . ,Ym)

�⌘
�!

⇣
8X1, . . . , Xn

�
p(X1, . . . , Xn) �!  p

�
^ 8Y1, . . . ,Ym

�
q(Y1, . . . ,Ym) �!  q

�⌘
,

where  p, q are suitable predicate expressions of the same arity as p and q,
respectively, and such that '[p/ p, q/ q ] is admissible.

For a finite set P of predicate symbols, ` Circ(P) is defined in the obvious way.
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Subsection 5.3

Minimal models
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Semantic aspects of minimizing predicates

Consider Example 5.1 again: ' = isBlock(a) ^ isBlock(b).
Circumscription of isBlock in ' derives

8X
�
isBlock(X ) �! (X = a_X = b)

�
⌘ 8X

�
(¬(X = a)^¬(X = b)) �! ¬isBlock(X )

�
.

Thus from all models I of ' only those that interpret isBlock as being true
for aI and bI only, are models of {'} [ Circum(', isBlock).

Consider the interpretation J defined as:
• dom(J ) = {1, 2, 3, 4},
• aJ = 1, bJ = 2,
• isBlockJ = {(1), (2), (3)}

J is a model of ', but not of {'} [ Circum(', isBlock).

Now, J can be made smaller: define J 0 as J , but isBlockJ 0
= {(1), (2)}.

Obviously: isBlockJ 0 ⇢ isBlockJ .
J 0 cannot be minimized further and still be a model of '!
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P-submodel, P-minimal

Definition 5.5
Let T be a finite first-order theory in a signature containing the predicates symbols
P = {p1, . . . pk}. Let I and J be models of T .

I is called a P-submodel of J , denoted by I P J , iff the following conditions hold:

• dom(I) = dom(J ),
• fI = fJ , for all function symbols f ,
• pI = pJ , for all predicate symbols p 62 P
• pI ✓ pJ , for all predicate symbols p 2 P

A model I of T is called P-minimal iff every model of T which is a P-submodel of I
is identical with I.
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Soundness of predicate circumscription

Theorem 5.6
Let T be a finite set of closed first-order formulas, P = {p1, . . . , pk} a set of
predicate symbols, and � a formula.
If T ` Circ(P)� then every P-minimal model of T is a model of �.

Proof: blackboard.
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Completeness of circumscription

Completeness of circumscription need not hold
T [ {Circum(T, P)} is too weak, since it admits too many models. The relations in
the models are expressible in FOL, but there exist relations (on the interpretation
domain) not expressible in FOL.

In the circumscription schema Circum(T, P) describes P-minimality only for relations
expressible in predicate logic.

How to re-gain completeness?
Use second order logic to quantify over relations.

Then the circumscription schema becomes:
8 

⇣
'[p/ ] ^ 8X1, . . . , Xn

�
 �! p(X1, . . . , Xn)

�⌘

�!
⇣
8X1, . . . , Xn

�
p(X1, . . . , Xn) �!  

�⌘
,

Now  is not limited to predicate expressions anymore!
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Subsection 5.4

Consistency and expressive power
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Consistency preservation

Consistency preservation:
if T is consistent, then T [ {Circum(T, P)} consistent as well.

Predicate circumscription does not preserve consistency.

A special case:
A set of closed formulas is called universal iff the Prenex normal form of all of its
formulas does not contain any existential quantifier.

Theorem 5.7
Let T be a finite, consistent, universal set of closed formulas, and P a finite set of
predicate symbols.
Then there exists a P-minimal model of T . Consequently, T [ Circum(T, P) is
consistent.

TU Dresden, WS 2017/18 Introduction to Nonmonotonic Reasoning Slide 147



Expressive power of circumscription

By (predicate) circumscription no new facts regarding the predicates not being
circumscribed can be derived about ground terms.

Theorem 5.8
Let T be a finite, universal set of closed formulas, P a finite set of predicate
symbols, p an n-ary predicate symbol with p 62 P and t1, . . . , tn ground terms. Then

1. T ` Circ(P)p(t1, . . . , tn) iff T |= p(t1, . . . , tn).

2. T ` Circ(P)¬p(t1, . . . , tn) iff T |= ¬p(t1, . . . , tn).

Proof: blackboard
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Applying Theorem 5.8 to the Tweety example

Consider again:
8X (bird(X ) ^ ¬abnormal(X ) �! flies(X ))
bird(tweety)

By Theorem 5.8 the circumscription of abnormal cannot derive flies(tweety)!

To see this, consider the interpretation I with
• dom(I) = {1},
• tweetyI = 1
• birdI = abnormalI = {1}, and
• fliesI = ;

Now, I is a model of T and flies(tweety) is not true in I.

I is {abnormal}-minimal, since abnormalI cannot be reduced while keeping fliesI
and validity of T . Then by Theorem 5.6 it follows that
T 6 ` Circ(abnormal)flies(tweety).

Predicate circumscription does not suffice to realize default reasoning!
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