

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

## Nonmonotonic Reasoning

Exercise Sheet 1

Winter Semester 2017/18 18th October 2017

Dr. (habil.) Anni-Yasmin Turhan

**Exercise 1.1** We consider substitutions. The *composition* of two substitutions  $\sigma = [X_1/t_1, \dots, X_n/t_n]$  and  $\rho = [Y_1/s_1, \dots, Y_m s/s_m]$  is defined as follows

$$\sigma \circ \rho = \{X_i/t_i\rho \mid X_i \neq t_i\rho \text{ for } 1 \le i \le n\} \cup \{Y_j/s_j \mid Y_j \notin \{X_i, \dots, X_n\} \text{ for } 1 \le j \le m\}.$$

(a) Given the substitutions  $\sigma = [V_1/p(), V_2/p'(), V_3/V_4]$  and  $\rho = [V_2/V_3, V_4/f_2(V_3), V_1/V_4]$  together with the term

$$t = f(g(V_1), g_2(p(), V_2)), f_2(V_4)).$$

Is  $\varphi \sigma \circ \rho$  a ground substitution?

(b) Show that substitions are closed under composition.

**Exercise 1.2** "For any formula  $\varphi$  and admissible substitution  $\sigma$ , the formula  $\forall X \varphi \longrightarrow \varphi \sigma$  is a tautology." Does this claim hold or not? How can one show this?

**Exercise 1.3** We are turning to Default logic. Devise a default theory that models the bike shop domain.