Subsection 4.3
Stable sets and their properties
Stable sets — origin

- Stable belief sets were introduced by Robert Stalnaker in the early ‘80s.
- Proposed as a formal representation of the epistemic state of an ideally rational agent, with full introspective capabilities.
- Assumes a propositional language, endowed with a modal operator $\square \varphi$ interpreted as “φ is believed.”
- A set of formulas is a stable set if it is “stable” under classical inference and epistemic introspection.
- Influenced research on AE logics and nonmonotonic logics in general.
Stable sets — definition

Definition 4.7 (stable sets)
Let E be a set of autoepistemic formulas. E is called stable iff

- E is deductively closed, i.e. $E = Th(E)$,
- $\varphi \in E$ implies $L\varphi \in E$, for all AE-formula φ, and
- $\varphi \notin E$ implies $\neg L\varphi \in E$, for all AE-formula φ

Note: Expansions are stable sets by definition. Thus they inherit all the properties we show for stable sets.
Stable sets and expansions

Theorem 4.8

For an AE-theory T and a set of AE-formulas E the following statements are equivalent:

1. E is an expansion of T
2. E is stable, $T \subseteq E$ and is T-sound.

Proof: blackboard
Lemma 4.9
For a stable set E and an AE-formula φ the following statements are equivalent:

a) $E \models_E \varphi$

b) $E \models \varphi$

c) $\varphi \in E$

For a FOL formula φ, the statements a)-c) are equivalent to

d) $E_0 \models \varphi$

Proof: blackboard
Stable sets are determined by their kernels

Stable sets are uniquely determined by their objective subsets, i.e. their kernels.

Theorem 4.10

For stable sets E and F, $E_0 = F_0$ implies $E = F$.

Proof: blackboard
Existence of stable sets

How can expansions be computed? A first hint

Theorem 4.11

Let T be a first order theory. Then there is a stable set E with $E_0 = T$.

Proof: blackboard
Properties of stable sets

Theorem 4.12 (Orthogonality of stable sets)

Let E and F be different stable sets. Then $E \cup F$ is inconsistent.

Proof: blackboard

Theorem 4.13

Let T be a first order theory. Then there is a stable set E with $E_0 = T$.

Proof: blackboard