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Abstract

Algebras as monoids, semi-groups, and Abelian semi-groups, including absorption op-
erators with their relative absorption constants, are also equipped with commutative
(C) and associative (A) properties such as the product operator with the constant zero:
x ∗ 0 ≈ 0 ∗ x ≈ 0. We present a sound algorithm and some examples of the anti-unification
problem for absorption (a) theories, including A or C operators.

1 Introduction

Anti-unification (AU) or generalization is a crucial method of reasoning. The problem of AU
consists of finding commonalities between two expressions. algorithms aiming to solve this
problem find a set of terms that minimally express all possible similarities between input ex-
pressions. The problem was introduced by Plotkin and Reynolds, addressing the (syntactic)
first-order languages [7, 8]. AU has been studied in several equational theories, such as theories
with associative (A) and commutative (C) operators [1], unital [5], and absorption (a) theories
[3]. Moreover, one of the relatively unexplored areas is the investigation of combinations be-
tween these theories, as highlighted in related works in [2] and [4]. This abstract discusses the
combinations of absorption theories with associative or commutative operators. For a survey
on anti-unification, see [6]. In a recent paper [3], the authors presented a sound and complete
algorithm that solves anti-unification modulo absorption theories, theories with operators that
satisfy the axioms {f(εf , x) ≈ εf , f(x, εf) ≈ εf}. This work aims to present recent advance-
ments, introducing two distinct extensions of the anti-unification problem modulo absorption.
We consider absorption symbols together with associative and commutative symbols, treated
separately in the same set of axioms. The inclusion of this kind of symbols raises new gener-
alizations that were not considered before either in a- or C- or A-theories, then we assemble
the existing algorithms in [3, 1] and introduce new rules to handle these generalizations. It is
important to highlight that here in this new approach, the role of ⋆ in the expansions of the
absorption constants within commutative or associative properties could lead us to new gen-
eralizations that need to be captured for the algorithm. This algorithm is terminating, sound,
and capable of capturing generalizations for this kind of combination.

1.1 Preliminaries

Let V be a countable set of variables and F a set of function symbols with a fixed arity.
Additionally, we assume F to contain a special constant ⋆, referred to as the wild card. The set
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of terms derived from F and V is denoted by T (F ,V), whose members are constructed using
the grammar t ∶∶= x ∣ f(t1, . . . , tn), where x ∈ V and f ∈ F with arity n ≥ 0. When n = 0, f
is called a constant. The set of variables occurring in t is denoted by var(t). The size of a
term is defined inductively as: size(x) = 1, and size(f(t1, . . . , tn)) = 1 + ∑

n
i=1 size(ti). Let σ

be a substitution, dom(σ), and rvar(σ) denote the domain and the set of variables occurring
in terms of the range of σ, respectively. The head of a term t is defined as head(x) = x and
head(f(t1, . . . , tn)) = f , for n ≥ 0.

The focus of this work is anti-unification modulo equational theories E that may include commu-
tative symbols, for short C-symbols, with axioms for commutativity, {f(x, y) = f(y, x)}, asso-
ciative symbols (A-symbols), with axioms for Associativity, {f(f(x, y), z) = f(x, f(y, z))}, and
absorption symbols, for short a-symbols, with absorption axioms, {f(x, εf) ≈ εf , f(εf , x) ≈ εf}.
Symbols f and εf are called related a-symbols. An (E)(E′)-theory includes E-symbols and E′-
symbols and an EE′-theory includes symbols holding E- and E′-axioms simultaneously.

Definition 1 (E-generalization, ⪯E). The generalization relation of the theory induced by E
holds for terms r, s ∈ T (F ,V), written r ⪯E s, if there exists a substitution σ such that rσ ≈E s.
An E-generalization r of s and t is a term r such that r ⪯E s and r ⪯E t.

Example 1. Consider aC = {f(εf , x) ≈ εf , f(x, y) ≈ f(y, x)}. Then f(x, a) is an aC-generali-
zation of εf and f(a, a): f(x, a){x↦ εf} ≈aC εf and f(x, a){x↦ a} ≈aC f(a, a).

Definition 2 (Minimal complete set of E-generalizations). The minimal complete set of E-
generalizations of the terms s and t, denoted as mcsgE(s, t), is a subset of GE(s, t), the set of
all E-generalizations of s and t, satisfying: (i) for each r ∈ GE(s, t) there exists r′ ∈ mcsgE(s, t)
such that r ⪯E r′; (ii) if r, r′ ∈ mcsgE(s, t) and r ⪯E r′, then r = r′.

Example 2. Continuing Example 1, notice that mcsgaC(εf , f(a, a)) = {f(x, a), f(x,x)}, and
mcsga(εf , f(a, a)) = {f(x, a), f(a, x), f(x,x)}.

Definition 3 (Anti-unification type). The anti-unification type of an equational theory E is
said to be unitary if mcsgE(s, t) is a singleton for all terms s and t; it is finitary if it is not
unitary but mcsgE(s, t) is always finite; it is infinitary if it is neither unitary nor finitary but
mcsgE(s, t) always exists; otherwise, it is said to be nullary.

Syntactic AU is unitary [7, 8], AU over (A) and (C) theories is finitary [1], AU over (a)
theories is infinitary [4], and AU with a disjoint combination of unital equations is nullary [5].

An anti-unification triple (AUT), s ≜x t, consists of a label x ∈ V, and two terms s and t.
Given a set A of AUTs, labels(A) = {x ∣ s ≜x t ∈ A} and size(A) = ∑s≜xt∈A (size(s)+ size(t)). A
set of AUTs is valid if its labels are pairwise disjoint. A wild AUT is of the form either ⋆ ≜x s
or s ≜x ⋆. A non-wild AUT s ≜x t is solved over an absorption theory a if head(s) and head(t)
are different and they are not related a-symbols.

The label x in an AUT s ≜x t, as a variable, is a most general generalization of the terms
s and t, and it is used to associate the generalizations of s and t. The wild card plays an
important role when anti-unification problems are decomposed, and related a-symbols appear
in the head of AUTs; they will represent any possible term expanding and a-constant symbol
needs to be expanded (εf ≈a f(εf ,⋆) or εf ≈a f(⋆, εf)), see [3].
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2 Anti-Unification in Absorption Theories with Commu-
tative or Associative Properties

Several algebras having absorption property like semi-groups, Abelian semi-groups, and monoids
may include the associative or/and commutative property. Interesting examples of these alge-
bras are the integers with multiplication with zero as absorption constant; the integers with the
greatest common divisor gcd with one as the absorption constant; the n×n-matrices over reals
with the product and the zero matrix; the powerset of a given set with the intersection ∩ with
∅ as absorption constant; Boolean algebras with two binary operations, where each operation
is associative, commutative, and has zero element. This section shows how generalizations for
a theories with A, C symbols differ from generalizations of pure a theories presented in [3].

Example 3. The set mcsga(εf , f(a, a)) = {f(x, a), f(a, x), f(x,x)}, which is different from the
set mcsgaC(εf , f(a, a)) (see Example 2), is computed by the algorithm in [3]. Also, for the more
elaborated example, mcsgaC(εf , f(f(a, a), f(a, a))) does not include a minimal generalizations
as f(f(a, a), f(u, a)) and f(f(a, u), f(a, u)) in mcsga(εf , f(f(a, a), f(a, a))).

An algorithm to compute generalizations in (a)(aC)(C)-theories should include rules to treat
C symbols as in [1], and also adaptations of the expansion and merge rules introduced in [3] for
a theories, to deal with aC symbols.

Example 4. The set mcsgaA(g(εf , a), g(f(f(a, a), f(a, a)), f(a, f(a, a)))) includes the aA-
generalization g(f(x, y), y), where g is a syntactic symbol and f is an aA-symbol. Notice that
this is not an a-generalization.

In the case of (a)(aA)(A)-theories, standard flattened notation is used, and for an A-symbol,
f , the flattened term f(t) equals t. An algorithm to compute the generalizations requires
designing specialized rules, adapted from [3], to deal with aA symbols.

3 Algorithm for Absorption with Commutative or Asso-
ciative Theories

Tables 1, 2, and 3 present inference rules for theories with a-, aC-, aA-, A-, and C-symbols.
The algorithm AUnif consists of applying these rules exhaustively, returning a set of objects
from which generalizations of the input AUTs may be derived. The inference rules work on
configurations, defined below.

Definition 4 (Configuration). A configuration is a quadruple of the form ⟨A;S;D; θ⟩, where,
A is a valid set of AUTs ( active set); S is a valid set of solved AUTs ( store); D is a valid
set of wild AUTs (delayed set); θ is a substitution such that rvar(θ) = labels(A) ∪ labels(S) ∪
labels(D) ( anti-unifier); and with the property that labels(A), labels(S), labels(D), and dom(θ)
are pairwise disjoint.

All terms occurring in a configuration are in their a-normal forms. For aA- and A-symbols,
all terms in a configuration are considered in the flattened form.

Table 1 contains rules: Decompose (
Dec

Ô⇒), Solve (
Sol

Ô⇒), Expansions for Left Absorption,

(
ExpL1

Ô⇒ and
ExpL2

Ô⇒), Expansions for Right Absorption (
ExpR1

Ô⇒ and
ExpR2

Ô⇒), and Expansion Absorption

in Both sides (
ExpB1

Ô⇒ and
ExpB2

Ô⇒), representing the common rules. Table 2 has the extra rules
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Commutative (
Com

Ô⇒), and Table 3 shows the additional rules Associativity Left and Right (
AL

Ô⇒)

and (
AR

Ô⇒), and Absorption-Associative Left and Right 1,2 (
aAL1

Ô⇒), (
aAL2

Ô⇒), (
aAR1

Ô⇒), and (
aAR2

Ô⇒).
By C Ô⇒∗ C′ we denote a finite sequence of inference rule applications starting at C and

ending with C′. In both cases we say C′ is derived from C. An initial configuration is a
configuration of the form ⟨A;∅;∅; ι⟩, where ι = {fA(x) ↦ x ∣ x ∈ labels(A)} with fA ∶ V →
(V ∖ labels(A)) being a bijection over variables. A configuration C is referred to as final if no
inference rule applies to C. We denote the set of final configurations finitely derived from an
initial configuration C by AUnif(C).

Example 5. Notice that AUnif computes the generalization f(x, a) for the problem in Example
3 using the rules (ExpL1) and (Sol); and the generalization g(f(x, z), y) for the problem in
Example 4 using the rules (Dec),(aAL1) for k = 1, and (Sol).

Table 1: Inference rules common to all theories.

(
Dec

Ô⇒)
⟨{f(s1, . . . , sn) ≜x f(t1, . . . , tn)} ⊍A;S;D; θ⟩

⟨{s1 ≜y1
t1, . . . , sn ≜yn tn} ∪A;S;D; θ{x↦ f(y1, . . . , yn)}⟩

where f is any symbol, n ≥ 0, and y1, . . . , yn are fresh variables.

(
Sol

Ô⇒)
⟨{s ≜x t} ⊍A;S;D; θ⟩

⟨A;{s ≜x t} ∪ S;D; θ⟩
where head(s) ≠ head(t) and they are not related a-symbols.

(
Mer

Ô⇒)
⟨∅;{s1 ≜x t1, s2 ≜y t2} ∪ S;T ; θ⟩

⟨∅;{s2 ≜y t2} ∪ S;T ; θ{x↦ y}⟩
where s1 ≈E s2, t1 ≈E t2, x ≠ y, and E is an equational theory.

In the following rules, f is an a-, aC-, or aA-symbol, and y1, y2 are fresh variables:

(
ExpL1

Ô⇒)
⟨{εf ≜x f(t1, t2)} ⊍A;S;D; θ⟩

⟨{εf ≜y1 t1} ∪A;S;{⋆ ≜y2 t2} ∪D; θ{x↦ f(y1, y2)}⟩

(
ExpL2

Ô⇒)
⟨{εf ≜x f(t1, t2)} ⊍A;S;D; θ⟩

⟨{εf ≜y2 t2} ∪A;S;{⋆ ≜y1 t1} ∪D; θ{x↦ f(y1, y2)}⟩

(
ExpR1

Ô⇒)
⟨{f(s1, s2) ≜x εf} ⊍A;S;D; θ⟩

⟨{s1 ≜y1 εf} ∪A;S;{s2 ≜y2 ⋆} ∪D; θ{x↦ f(y1, y2)}⟩

(
ExpR2

Ô⇒)
⟨{f(s1, s2) ≜x εf} ⊍A;S;D; θ⟩

⟨{s2 ≜y2 εf} ∪A;S;{s1 ≜y1 ⋆} ∪D; θ{x↦ f(y1, y2)}⟩

(
ExpB1

Ô⇒)
⟨{εf ≜x εf} ⊍A;S;D; θ⟩

⟨A;S;{εf ≜y1 ⋆, ⋆ ≜y2 εf} ∪D; θ{x↦ f(y1, y2)}⟩

(
ExpB2

Ô⇒)
⟨{εf ≜x εf} ⊍A;S;D; θ⟩

⟨A;S;{⋆ ≜y1 εf , εf ≜y2 ⋆} ∪D; θ{x↦ f(y1, y2))}⟩

Lemma 1 (Configuration Preservation). Let C be a configuration and C Ô⇒∗ C′. Then C′ is a
configuration.

Proof. According to the rules in Tables 1,2 and 3 we can have the following two cases:
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Table 2: Inference rule for aC- and C-symbols.

(
Com

Ô⇒)
⟨{f(s1, s2) ≜x f(t1, t2)} ⊍A;S;T ; θ⟩

⟨{s1 ≜y1 t2, s2 ≜y2 t1} ∪A;S;T ; θ{x↦ f(y1, y2)}⟩
for f an aC- or C-symbol and y1, y2 fresh variables.

Table 3: Inference rule for aA and A symbols.

In the next two rules, g is either an aA-symbol or an A-symbol:

(
AL

Ô⇒)
⟨{g(s1, . . . , sn) ≜x g(t1, . . . , tm)} ⊍A;S;T ; θ⟩

⟨{s1 ≜y1 g(t1, . . . , tk), g(s2, . . . , sn) ≜y2 g(tk+1, . . . , tm)} ∪A;S;T ; θ{x↦ g(y1, y2)}⟩
for 1 ≤ k ≤m − 1 and y1, y2 are fresh variables.

(
AR

Ô⇒)
⟨{{g(s1, . . . , sn) ≜x g(t1, . . . , tm)} ⊍A;S;T ; θ⟩

⟨{g(s1, . . . , sk) ≜y1 t1, g(sk+1, . . . , sn) ≜y2 g(t2, . . . , tm)} ∪A;S;T ; θ{x↦ g(y1, y2)}⟩
for 1 ≤ k ≤ n − 1 and y1, y2 are fresh variables.

Next five rules apply to aA-symbols, and 1 ≤ k ≤ n − 1, and y1, y2 are fresh variables:

(
aAL1

Ô⇒)
⟨{εf ≜x f(t1, . . . , tn)} ⊍A;S;T ; θ⟩

⟨{εf ≜y1 f(t1, . . . , tk)} ∪A;S;{εf ≜y2 f(tk+1, . . . , tn)} ∪ T ; θ{x↦ f(y1, y2)}⟩

(
aAL2

Ô⇒)
⟨{εf ≜x f(t1, . . . , tn)} ⊍A;S;T ; θ⟩

⟨{εf ≜y2 f(tk+1, . . . , tn)} ∪A;S;{εf ≜y1 f(t1, . . . , tk)} ∪ T ; θ{x↦ f(y1, y2)}⟩

(
aAR1

Ô⇒)
⟨{f(s1, . . . , sn) ≜x εf} ⊍A;S;T ; θ⟩

⟨{f(t1, . . . , tk) ≜y1 εf} ∪A;S;{f(tk+1, . . . , tn) ≜y2 εf} ∪ T ; θ{x↦ f(y1, y2)}⟩

(
aAR2

Ô⇒)
⟨{f(s1, . . . , sn) ≜x εf} ⊍A;S;T ; θ⟩

⟨{f(tk+1, . . . , tn) ≜y2 εf} ∪A;S;{f(t1, . . . , tk) ≜y1 εf} ∪ T ; θ{x↦ f(y1, y2)}⟩

• A rule removes an AUT s ≜x t from the active set of C. Then either s ≜x t occurs in
the store of C′, or the anti-unifier component of C′ is the composition of the anti-unifier
component of C with {x ↦ r}, where var(r) are fresh variables labeling newly added
AUTs in the active and delayed sets of C′.

• A rule removes an AUT s ≜x t from the store of C. Then the store of C′ is a subset of
the store of C and the anti-unifier component of C′ is the composition of the anti-unifier
component of C with {x ↦ y}, where y is a label of an AUT in the store of C such that
x ≠ y.

In both cases, the properties of a configuration are preserved.

Theorem 1 (Termination). Let C be a configuration. Then AUnif(C) is finitely computable.

Proof. The termination of AUnif is proved using a lexicographical measure over configurations.
The measure for C = ⟨A;S;T ; θ⟩ is given by (size(A), size(S)). All rules except (Mer) decrease
the first component, and (Mer) maintains the first but decreases the second component.

Termination (Theorem 1) guarantees that always is possible to obtain a final configuration.
Configurations of the form ⟨∅;S;D; θ⟩ where S has no duplicated AUTs, except for the label,
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are final configurations since no rule can be applied. Since all rules, except for (Mer), decrease
the size of the active set, it becomes empty, and the rule (Mer) will eliminate all such possible
duplication in the store. Configuration preservation (Lemma 1) and termination allow proving
the soundness of AUnif for the combination of the a-, aC-, aA-, C-, and A-theories.

Theorem 2 (Soundness). Let ⟨∅;Sn;Dn; θn⟩ ∈ AUnif(⟨A0;S0;D0; θ0⟩), and E be any combi-
nation of the theories a, aC, aA, C, and A. Then, for all s ≜x t ∈ A0 ∪ S0, xθn ∈ GE(s, t).

Proof. The proof is by induction on the length of derivations, analyzing each rule application.

4 Work in progress

Work in progress addresses adaptation of AUnif to allow combinations in which (AC)- and
(aAC)-symbols are also allowed. Of course, it also aims to prove completeness. For theories with
C-, a-, and aC-symbols, currently under study, the proof requires induction on the occurrence
of variables in the possible generalizations interrelated with structural analysis of the AUTs
under the action of AUnif. The analysis is much more elaborate than the applied on the proof
of completeness for a-theories in [3]. Additionally, succeeding in the completeness proof will
imply that the anti-unification problem is infinitary.
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