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Abstract

We discuss how to extend anti-unification to generalize higher-order terms with dif-
ferent types by extending the type system used within an existing framework with union
and intersection types. We provide examples illustrating desirable properties of the corre-
sponding least general generalizers.
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1 Introduction

Anti-unification was introduced and studied by Plotkin [18] and Reynolds [19] in the 1970s. It
requires identifying similarities between two symbolic expressions and retaining them as a new
symbolic expression, called a generalizer of the given ones. At the same time, the differences
between the given expressions are also reflected in their generalization in the form of new
variables. This new symbolic expression is referred to as least general (or most particular)
when it maximally captures the structure of the input expressions and abstracts the differences
by new variables uniformly. For instance, a least general generalizer (lgg) of two first-order
terms f(a, g(a)) and f(b, g(b)) is f(x, g(x)). In the first-order syntactic case, the least general
generalizer (lgg) is unique. But there are theories and problems for which there exist more than
one (even infinitely many) lggs, or lggs do not exist at all.

In recent years, research on anti-unification has intensified, mainly due to its various appli-
cations. Questions about anti-unification have been studied in different syntactic and semantic
frameworks; for example, Baader [4] studied it for a class called commutative theories, Alpuente
et al. [2] considered anti-unification over equational theories with associative (A), and commu-
tative (C) operators, Cerna and Kutsia studied theories with idempotent operators [8] and
most recently, Ayala-Rincón et al. studied theories with absorbing operators [3]. Concerning
higher-order anti-unification for simply-typed λ-terms, Cerna and Kutsia [11] proposed a generic
framework of algorithms producing top-maximal (i.e., retaining maximal common top part of
the given terms) and shallow (i.e., forbidding nested generalization variables) generalization
variants, while Cerna and Buran [9] proved nullarity of anti-unification in this calculus for the
unrestricted case. Some of those equational and higher-order anti-unification algorithms have
been implemented and are accessible online [1, 6]. The recent survey [12] gives more detailed
information about equational and higher-order anti-unification.
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As an example of one of the variants included in the framework presented in [11], namely,
the common subterms variant or, shortly, CS-variant, consider terms s = λx.f(g(x), g(g(g(x))))
and t = λx.f(g(x), h(h(g(x)))). They have unique top-maximal shallow CS-lgg r =
λx.f(g(x), X(g(x))), which retains not only the topmost maximal common structure of s and
t, but also keeps the common subterm g(x) that appears under distinct symbols in them. This
common subterm appears in r under the generalization variable X. An example of a non-
shallow top-maximal lgg of s and t is λx.f(g(x), X(X(g(x)))), where generalization variables
appear nested.

Both mentioned papers [9, 11], as well as some other ones (e.g., [7, 13, 16]) assume that in
generalization problems, the input terms have the same type. Relaxing this restriction would
widen the practical application area of anti-unification techniques. This abstract presents work
in progress towards lifting this restriction in the context of intersection and union types. We
employ these types to capture the semantics of generalizing terms of different types and illustrate
our approach through examples.

2 Preliminaries

Types are constructed from a set of base types π using the grammar τ ::= π | τ → τ | τ∧τ | τ∨τ ,
where ∧ stands for type intersection and ∨ for type union. We use Greek letters τ , σ and ρ to
denote types.

λ-terms (typically s, t, r) are built using the grammar t ::= x | c | λx.t | t t, where x is a
variable and c is a constant. Notions as α-conversion, β-reduction, η-long, and β-normal forms
are defined as usual (e.g., [14]). Unless otherwise stated, we only consider λ-terms in β-normal
η-long form and use term and λ-term synonymously. A complete system for typing terms is
presented in [5] (see also [17]).

The subtype relation is formalized as the set of valid consequences derived using the inference
rules presented below (S-ref, S-tran, and S-arrow); these rules derive statements of the form
τ1 ≤ τ2, read as “τ1 is a subtype of τ2” or “τ2 is a supertype of τ1”.

(S-ref) σ ≤ σ
σ1 ≤ σ2 σ2 ≤ σ3(S-tran)

σ1 ≤ σ3

σ ≤ σ′ τ ′ ≤ τ
(S-arrow)

σ′ → τ ′ ≤ σ → τ

The subtyping relation with respect to a given type system T has the following property:
If the judgment Γ ⊢T t : σ holds and σ ≤ τ , then Γ ⊢T t : τ holds:

Γ ⊢ t : σ σ ≤ τ
(T-Sub)

Γ ⊢ t : τ

Properties of subtyping over the intersection and union types relevant to our work are
presented below. Note, σ ∼ τ denotes that both σ ≤ τ and τ ≤ σ hold.

1. σ ∧ σ ∼ σ ∼ σ ∨ σ, 2. σi ≤ σ1 ∨ σ2, i = 1, 2, 3. σ1 ∧ σ2 ≤ σi, i = 1, 2.

This abstract assumes the following:

A1. σ ∨ τ is the least upper bound of σ and τ w.r.t. the subtyping relation,

A2. σ ∧ τ is the greatest lower bound of σ and τ w.r.t. the subtyping relation.

A substitution (typically θ) is a finite set of pairs {X1 7→ t1, · · · , Xn 7→ tn}, where Xi ̸= Xj

if i ̸= j. Postfix notation, e.g., tθ, denotes substitution application.

2
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Let the relation ⪯ (≺ is the strict part) be a preorder over terms defined as follows: r ⪯ t if
a substitution θ exists such that rθ = t. A term r is a generalizer of two terms s and t if r ⪯ s
and r ⪯ t. A term r is a least general generalizer (lgg) of s and t if there is no term r′ such
that r′ is a generalizer of s and t and r ≺ r′. The anti-unification problem for s and t, denoted
as s ≜ t, is defined as

Given: terms t : τ1 and s : τ2 in η-long β-normal form.

Find: an lgg r : τ of s and t such that τ1 ∨ τ2 = τ .

The intuition behind the lgg is that it should express the common structure of typed input
expressions as much as possible while “minimizing the subtyping distance” between its type
and the input types. Generalizers represent the divergences in the input term structures by
variables. Thus, generalizers can be instantiated into the input terms of the problem. As for
the generalizer type, it should be the least possible common supertype of the original ones.
From the generalization definition, it follows that there should exist substitutions θ1 and θ2
such that rθ1 = s : τ and rθ2 = t : τ , where τ is a supertype of both τ1 and τ2. There can be
many supertypes of τ1 and τ2. However, τ is selected as the most specific supertype of τ1 and
τ2, i.e., τ must be the least upper bound of the types of s and t, which, by assumption 2, is
exactly τ1 ∨ τ2.

3 Extending Generalization to Types

Generalizing applications. Consider an anti-unification problem f(a) ≜ g(b) with f : σ →
τ , g : σ′ → τ ′, a : ρa ≤ σ and b : ρb ≤ σ′. It is straightforward that the term XY with an
adequate type is its solution. The main problem is how to systematically build the adequate
generalizer and its type. Such a mechanism is still a work in progress, not addressed in this
abstract. Instead, the focus is on the desired properties of such generalizations regarding works
on HO-generalization as [10].

Looking at XY above, we see that X must be of function type, i.e., X : γ1 → γ2 because it
applies to Y . Furthermore, X is a generalizer of f and g. Thus, its type must be a supertype
of both types of f and g: σ → τ ≤ γ1 → γ2 and σ′ → τ ′ ≤ γ1 → γ2. To satisfy both relations,
it is necessary that γ1 ≤ σ and γ1 ≤ σ′, and that τ ≤ γ2 and τ ′ ≤ γ2. Choose γ1 = σ ∧ σ′ and
γ2 = τ ∨ τ ′. Then, the subtyping statements σ → τ ≤ γ1 → γ2 and σ′ → τ ′ ≤ γ1 → γ2 follow
from a derivation by the (S-arrow) rule:

σ ∧ σ′ ≤ σ τ ≤ τ ∨ τ ′

σ → τ ≤ (σ ∧ σ′) → (τ ∨ τ ′)

σ ∧ σ′ ≤ σ′ τ ′ ≤ τ ∨ τ ′

σ′ → τ ′ ≤ (σ ∧ σ′) → (τ ∨ τ ′)

Next, since Y generalizes a and b, the type of Y , say ρy, must be a supertype of both ρa
and ρb. Also, ρy ≤ γ1 since XY should be well-typed. It implies that

ρa ∨ ρb ≤ ρy ≤ σ ∧ σ′. (1)

Suppose that condition (1) holds, and select the lower bounds of the supertypes obtained
above, i.e.,

X : γ1 → γ2 = (σ ∧ σ′) → (τ ∨ τ ′)

Y : ρy = ρa ∨ ρb.

3
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Then, it follows that we have f(a) : τ , g(b) : τ ′ and their generalizer XY : τ ∨ τ ′.
The generalizer XY of f(a) and g(b) is not a shallow term. It was chosen to facilitate

readers’s comprehension since it is an application (as the input terms). If a ̸= b, then the
unique top-maximal shallow generalizer of f(a) and g(b) is just X.

Cerna and Kutsia introduced a so-called common-subterm variant for HO-generalization
(CS-variant, see [11]). It is one of the special cases of top-maximal shallow generalization. In
this variant, every free generalization variable occurring in an lgg of two terms s and t and
generalizing their subterms s′ and t′, should apply to maximal common subterms that appear
in s′ and t′. For example, X(h(a)) is a CS-generalizer of f(h(a), a) ≜ g(b, h(a)) while X(Y, Z)
is not (although it is their generalizer).

Now consider f(a) ≜ g(a) with f : σ → τ , g : σ′ → τ ′, a : ρ1 ≤ σ and a : ρ2 ≤ σ′. The
CS-generalizer of this problem is X(a) with the types X : γ1 → γ2 = (σ ∧ σ′) → (τ ∨ τ)′ and
a : ρ1 ∨ ρ2, subject of an additional constraint ρ1 ∨ ρ2 ≤ σ ∧ σ′.

Generalizing abstractions. Consider an anti-unification problem where both input terms
are different identity functions: λx.x ≜ λy.y where x : σ and y : τ . It is straightforward that
λz.z with the appropriated type will be the generalizer of the input terms.

To see what should be the generalization type, first notice that r = λz.z must have a
function type, i.e., r : γ1 → γ2. Also, this type must be a supertype of both input types:
σ → σ ≤ γ1 → γ2 and τ → τ ≤ γ1 → γ2. To satisfy both relations, it is necessary that γ1 ≤ σ,
γ1 ≤ τ , σ ≤ γ2 and σ ≤ γ2. By a reasoning analogous to the application case above, taking
into account that z : σ ∧ τ implies z : σ ∨ τ , we get that

r = λz.z : (σ ∧ τ) → (σ ∨ τ). (2)

Observe in (2) that the typing condition for the generalizer decreased the domain and
increased the range of those input terms. Otherwise, it would not satisfy the requirement that
the type of the generalizer must be a supertype of the types of the input terms. Obviously,
(σ ∧ τ) → (σ ∧ τ) is a supertype neither of σ → σ nor of τ → τ . The same is true for
(σ ∨ τ) → (σ ∨ τ). This is a consequence of the contravariance in the rule (S-arrow).

Example 1. Now, consider the identity function defined in different sets: IDN(n) = n and
IDZ(z) = z. They are expressed in λ-calculus by λ(x : N).(x : N) and λ(y : Z).(y : Z), then
the generalizer of those functions will be λ(k : N ∧ Z).(k : N ∨ N). Therefore, the generalizer is
IDgen(k) = k with domain N ∩ Z and range N ∪ Z which means that the computed generalizer
is a non-surjective identity function from N to Z.

This abstract does not discuss the inhabitation of intersection types. It is clear that by
interpreting types as sets, some intersection types may get uninhabited. In these special cases,
some generalizations will not have semantic meaning, suggesting that generalizations of the
input terms do not exist. (A similar phenomenon was observed in the calculus of construc-
tions [15] where there is no semantic interpretation of the generalization of abstract kinds, Set,
Prop, Type, etc.) For instance, consider two identity functions: one defined on the set of ratio-
nal numbers and the other one on the set of irrational numbers, respectively: IDQ(q) = q and
IDI(i) = i. The generalizer should be IDgen(g) = g with domain Q∩ I and range Q∪ I; however,
this domain set is empty. Consequently, the generalizer does not exist.

Now, consider a generalization problem λx.f(x, a) ≜ λy.g(b, y) with x : σx ≤ σ, f : σ → τ ,
y : σy ≤ σ′ and g : σ′ → τ ′, and the requirement that a solution of this problem should retain
the common top-maximal structure of the given terms. Since both terms are abstractions, the
desired generalizer should be an abstraction, too. Also, since the scopes of the input terms

4
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have different heads f and g, the scope of the generalizer must be a free variable. Therefore,
λz.X(z) is the lgg that can be transformed to the original expressions via the substitutions
θ1 = {X 7→ λu.f(u, a)} and θ2 = {X 7→ λu.g(b, u)}:

λz.X(z)θ1 = λz.(λu.f(u, a))(z) =β λz.f(z, a) =α λx.f(x, a)

λz.X(z)θ2 = λz.(λu.f(b, u))(z) =β λz.g(b, z) =α λy.g(b, y).

What about the type of this generalizer? Let λz.X(z) : γ1 → γ2. Again, to infer the
conditions for this to be an adequate type, we have σx → τ ≤ γ1 → γ2 and σy → τ ′ ≤ γ1 → γ2,
which imply

λz.X(z) : (σx ∧ σy) → (τ ∨ τ ′).

Then z : σx ∧ σy and X(z) : τ ∨ τ ′. Since X applies z and has range τ ∨ τ ′, it follows that
X : (σx ∧ σy) → (τ ∨ τ ′).

Example 2. With this example, we illustrate how generalization with intersection and union
types can be used to synthesize a generic function from two concrete instances. As the given
concrete ones, consider two functions, congruences modulo 3 and 5, defined respectively as

MOD3(n : N) : {0, . . . , 2} = if n < 3 then n else MOD3(n− 3) (3)

MOD5(n : N) : {0, . . . , 4} = if n < 5 then n else MOD5(n− 5), (4)

where the explicit types indicate that MOD3 : N → {0, . . . , 2} and MOD5 : N → {0, . . . , 4}.
We aim to synthesize a generic function for congruence modulo, from which proper instan-

tiations are used to obtain these concrete ones. This we do in two steps, where only the first
one concerns generalizer computation:

Step 1. Anti-unify (3) and (4). It will give

X(n) = if n < k then n else X(n− k) (5)

where X and k are generalization variables of types respectively X : (N ∧ N) →
({0, . . . , 2} ∨ {0, . . . , 4}) = N → {0, . . . , 4} and k : N. The original expressions (3) and (4)
can be obtained by the substitutions, respectively:

{X 7→ λx.MOD3(x), k 7→ 3}
{X 7→ λx.MOD5(x), k 7→ 5}.

Step 2. Notice that although (5) is a (least general) generalizer of two function definitions
(3) and (4), it is not a function definition itself because of those free generalization vari-
ables. Now, we turn it into such a definition by introducing a new function name GENMOD
(meaning generic MOD) instead of X. It has both n and k as its arguments:

GENMOD(n, k) = if n < k then n else GENMOD(n− k, k) (6)

With some further processing that is beyond the scope of this abstract, one can connect
the type to GENMOD to k as, e.g., N → N → {0, . . . , k − 1}.

5
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4 Final Remarks

This abstract presented preliminary investigations about higher-order generalization with in-
tersection and union types, aiming at extending existing HO-generalization problems (e.g.,
[7, 10, 11]) to this setting. We illustrated some desirable properties of such generalizers. An
anti-unification algorithm to construct generalizers and an algorithm to compute their (min-
imal) types are subjects of ongoing work. Future research should cover anti-unification with
abstractions and terms of different structures.
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