One is all you need: Second-order Unification without First-order Variables *

David M. Cerna¹ and Julian Parsert²³

 Czech Academy of Sciences, Prague, Czechia dcerna@cs.cas.cz
² University of Oxford, United Kingdom
³ University of Innsbruck, Austria julian.parsert@gmail.com

Abstract

We consider the fragment of Second-Order unification with the following properties: (i) only one second-order variable allowed, (ii) first-order variables do not occur. We show that Hilbert's 10^{th} problem is reducible to this fragment if the signature contains a binary function symbol and two constants. This generalizes known undecidability results.¹

1 Introduction

In the 2014 addition of the unification workshop Levy [1] provided a comprehensive survey of decidability and undecidability results for second-order unification. While second-order unification without first-order variables was considered [2], 2 second-order variables were required to show undecidability. Furthermore, investigations proving undecidability of second-order unification with 1 second-order variable required first-order variables [2]. We generalize these result by showing one second-order variable is enough undecidability (no first-order variables). Proofs of all significant lemmas and theorems may be found in the *arxiv version* of the paper arxiv.org/abs/2404.10616.

2 Preliminaries

We consider a finite signature $\Sigma = \{f_1, \dots, f_n, c_1, \dots, c_m\}$ where $n, m \ge 1$, for $1 \le i \le n$, the arity of f_i is denoted $arity(f_i) \ge 1$, and for all $1 \le j \le m$, the arity of c_j is denoted $arity(c_j) = 0$ (constants). Furthermore, let $\Sigma^{\le 1} \subseteq \Sigma$ be the set of base symbols defined as $\Sigma^{\le 1} = \{c \mid c \in \Sigma \land arity(c) \le 1\}.$

By \mathcal{V} we denote a countably infinite set of *variables*. Furthermore, let $\mathcal{V}_i, \mathcal{V}_f \subset \mathcal{V}$ such that $\mathcal{V}_i \cap \mathcal{V}_f = \emptyset$. We refer to members of \mathcal{V}_i as *individual variables*, denoted by x, y, z, \cdots and members of \mathcal{V}_f as *function variables*, denoted by F,G,H, \cdots . Members of \mathcal{V}_f have an arity ≥ 1 which we denote by arity(F) where $F \in \mathcal{V}_f$. By \mathcal{V}_f^n , where $n \geq 1$, we denote the set of all function variables with arity n. We will use h to denote a symbol in $\mathcal{V} \cup \Sigma$ when doing so would not cause confusion.

We refer to members of the term algebra $\mathcal{T}(\Sigma, \mathcal{V})$, as *terms*. By $\mathcal{V}_i(t)$ and $\mathcal{V}_f(t)$ ($\mathcal{V}_f^n(t)$ for $n \geq 1$) we denote the set of individual variables and function variables (with arity = n) occurring in t, respectively. We refer to a term t as n-second-order ground (n-SOG) if $\mathcal{V}_i(t) = \emptyset$,

^{*}Funded by Czech Science Foundation Grant No. 22-06414L and Cost Action CA20111 EuroProofNet and the Austrian Science Fund (FWF) project AUTOSARD (36623).

¹Full Results and proofs in Arxiv paper arxiv.org/abs/2404.10616.

 $\mathcal{V}_f(t) \neq \emptyset$ with $\mathcal{V}_f(t) \subset \mathcal{V}_f^n$, first-order if $\mathcal{V}_f(t) = \emptyset$, and ground if t is first-order and $\mathcal{V}_i(t) = \emptyset$. The sets of n-SOG, first-order, and ground terms are denoted \mathcal{T}_{SO}^n , \mathcal{T}_{FO} , and \mathcal{T}_G , respectively. When possible, without causing confusion, we will abbreviate a sequence of terms t_1, \cdots, t_n by $\overline{t_n}$ where $n \geq 0$.

The set of positions of a term t, denoted by pos(t), is a set of strings of positive integers, defined as $pos(h(t_1, \ldots, t_n)) = \{\epsilon\} \cup \bigcup_{i=1}^n \{i.p \mid p \in pos(t_i)\}, t_1, \ldots, t_n$ are terms, and ϵ denotes the empty string. For example, the term at position 1.1.2 of g(f(x, a)) is a. Given a term t and $p \in pos(t)$, then $t|_p$ denotes the subterm of t at position p. Given a term t and $p, q \in pos(t)$, we write $p \sqsubseteq q$ if q = p.q' and $p \sqsubset q$ if $p \sqsubseteq q$ and $p \neq q$. The set of subterms of a term t is defined as $sub(t) = \{t|_p \mid p \in pos(t)\}$. The head of a term t is defined as $head(h(t_1, \ldots, t_n)) = h$, for $n \ge 0$. The number of occurrences of a term s in a term t is defined as $occ(s,t) = |\{p \mid s = t|_p \land p \in pos(t)\}|$. The number of occurrences of a symbol h in a term t is defined as $occ_{\Sigma}(h, t) = |\{p \mid h = head(t|_p) \land p \in pos(t)\}|$.

A *n*-second-order ground (*n*-SOG) unification equation has the form $u \stackrel{?}{=}_{F} v$ where u and v are *n*-SOG terms and $F \in \mathcal{V}_{f}^{n}$ such that $\mathcal{V}_{f}(u) = \{F\}$ and $\mathcal{V}_{f}(v) = \{F\}$. A *n*-second-order ground unification problem (*n*-SOGU problem) is a pair (\mathcal{U}, F) where \mathcal{U} is a set of *n*-SOG unification equations and $F \in \mathcal{V}_{f}^{n}$ such that for all $u \stackrel{?}{=}_{G} v \in \mathcal{U}, G = F$. Recall from the definition of *n*-SOG that $\mathcal{V}_{i}(u) = \mathcal{V}_{i}(v) = \emptyset$.

A substitution is set of bindings of the form $\{F_1 \mapsto \lambda \overline{y_{l_1}}.t_1, \cdots F_k \mapsto \lambda \overline{y_{l_k}}.t_k, x_1 \mapsto s_1, \cdots, x_w \mapsto s_w\}$ where $k, w \ge 0$, for all $1 \le i \le k$, t_i is first-order and $\mathcal{V}_i(t_i) \subseteq \{y_1, \cdots, y_{l_i}\}$, $arity(F_i) = l_i$, and for all $1 \le i \le w$, s_i is ground. Given a substitution σ , $dom_f(\sigma) = \{F \mid F \mapsto \lambda \overline{x_n}.t \in \sigma \land F \in \mathcal{V}_f^n\}$ and $dom_i(\sigma) = \{x \mid x \mapsto t \in \Sigma \land x \in \mathcal{V}_i\}$. We refer to a substitution σ as second-order when $dom_i(\sigma) = \emptyset$ and first-order when $dom_f(\sigma) = \emptyset$. We use postfix notation for substitution applications, writing $t\sigma$ instead of $\sigma(t)$. Substitutions are denoted by lowercase Greek letters. As usual, the application $t\sigma$ affects only the free variable occurrences of t whose free variable is found in $dom_i(\sigma) = \{F\}$, $dom_i(\sigma) = \emptyset$, and for all $u \stackrel{?}{=} v \in \mathcal{U}$, $u\sigma =_{\alpha\beta} v\sigma$.

We will use the following theorem due to Matiyasevich, Robinson, Davis, and Putnam, in later sections.

Theorem 2.1 (Hilberts 10^{th} problem or Matiyasevich–Robinson–Davis–Putnam theorem [3]). Given a polynomial $p(\overline{x})$ with integer coefficients, finding integer solutions to $p(\overline{x}) = 0$ is undecidable.

3 n-Multipliers and n-Counters

In this section, we define and discuss the *n*-multiplier and *n*-counter functions, which allow us to encode number-theoretic problems in second-order unification. These functions are motivated by the following simple observation about *n*-SOGU.

Lemma 3.1. Let (\mathcal{U}, F) be a unifiable *n*-SOGU problem, and σ a unifier of (\mathcal{U}, F) . Then for all $c \in \Sigma^{\leq 1}$ and $u \stackrel{?}{=}_{F} v \in \mathcal{U}$, $occ_{\Sigma}(c, u\sigma) = occ_{\Sigma}(c, v\sigma)$.

Definition 3.1 (*n*-Mutiplier). Let t be a n-SOG term such that $\mathcal{V}_f(t) \subseteq \{F\}$ and $F \in \mathcal{V}_f^n$ and $h_1, \dots, h_n \geq 0$. Then we define $mul(F, \overline{h_n}, t)$ recursively as follows:

- if t = b and arity(b) = 0, then $mul(F, \overline{h_n}, t) = 0$.
- if $t = f(t_1, \dots, t_l)$, then $mul(F, \overline{h_n}, t) = \sum_{j=1}^l mul(F, \overline{h_n}, t_j)$

• if $t = F(\overline{t_n})$, then $mul(F, \overline{h_n}, t) = 1 + \sum_{i=1}^n h_i \cdot mul(F, \overline{h_n}, t_i)$

Furthermore, let (\mathcal{U}, F) be an *n*-SOGU problem then, $mul_l(F, \overline{h_n}, \mathcal{U}) = \sum_{\substack{u = F \\ v \in \mathcal{U}}} mul(F, \overline{h_n}, u)$ and $mul_r(F, \overline{h_n}, \mathcal{U}) = \sum_{\substack{u = F \\ u = F \\ v \in \mathcal{U}}} mul(F, \overline{h_n}, v).$

The *n*-multiplier captures the following property of a term: let t be a *n*-SOG term such that $\mathcal{V}_f(t) \subseteq \{F\}, f \in \Sigma$, and $\sigma = \{F \mapsto \lambda \overline{x_n}.s\}$ a substitution where $occ_{\Sigma}(f,s) \ge 0, \mathcal{V}_i(s) \subseteq \{\overline{x_n}\}$, and for all $1 \le i \le n, occ(x_i, s) = h_i$. Then $occ_{\Sigma}(f, t\sigma) \ge occ_{\Sigma}(f, s) \cdot mul(F, \overline{h_n}, t)$ where the $\overline{h_n}$ capture the duplication of the arguments to F. The following presents this idea using a concrete example.

Example 3.1. Consider the term t = g(F(g(a, F(s(a)))), g(F(a), F(F(F(b))))). Then the *n*multiplier of t is $mul(F, h, t) = mul(F, h, F(g(a, F(s(a))))) + mul(F, h, g(F(a), F(F(F(b))))) = (1 + h) + (1 + (1 + h \cdot (1 + h))) = 3 + 2 \cdot h + h^2$. Thus, when h = 2 we get mul(F, h, t) = 11. Observe $occ_{\Sigma}(g', t\{F \mapsto \lambda x.g'(x, x)\}) = 11$.

Next, we introduce the *n*-counter function. Informally, given an *n*-SOG term *t* such that $\mathcal{V}_f(t) \subseteq \{F\}$, a symbol $c \in \Sigma^{\leq 1}$, and a substitution σ with $dom_f(\sigma) = \{F\}$, the *n*-counter captures number of occurrences of *c* in $t\sigma$.

Definition 3.2 (*n*-Counter). Let $c \in \Sigma^{\leq 1}$, t be a *n*-SOG term such that $\mathcal{V}_f(t) = \{F\}$ and $F \in \mathcal{V}_f^n$, and $h_1, \dots, h_n \geq 0$. Then we define $cnt(F, \overline{h_n}, c, t)$ recursively as follows:

- if t = b, arity(b) = 0, and $b \neq c$, then $cnt(F, \overline{h_n}, c, t) = 0$.
- if $t = f(\overline{t_l})$ and $f \neq c$, then $cnt(F, \overline{h_n}, c, t) = \sum_{i=1}^l cnt(F, \overline{h_n}, c, t_j)$.
- if t = c(t), then $cnt(F, \overline{h_n}, c, c(t)) = 1 + cnt(F, \overline{h_n}, c, t)$
- if $t = F(\overline{t_n})$, then $cnt(F, \overline{h_n}, c, t) = \sum_{i=1}^n h_i \cdot cnt(F, \overline{h_n}, c, t_i)$

Furthermore, let (\mathcal{U}, F) be a *n*-SOGU problem them, $cnt_l(F, \overline{h_n}, c, \mathcal{U}) = \sum_{u \stackrel{?}{=}_F v \in \mathcal{U}} cnt(F, \overline{h_n}, c, u)$ and $cnt_r(F, \overline{h_n}, c, \mathcal{U}) = \sum_{u \stackrel{?}{=}_F v \in \mathcal{U}} cnt(F, \overline{h_n}, c, v).$

The *n*-counter captures how many occurrences of a given constant or monadic function symbol will occur in a term $t\sigma$ where $\mathcal{V}_f(t) = \{F\}, \sigma = \{F \mapsto \lambda \overline{x_n}.s\}, \mathcal{V}_i(s) \subseteq \{\overline{x_n}\}$, and for all $1 \leq i \leq n$, $occ(x_i, s) = h_i$ A concrete instance is presented in Example 3.2.

Example 3.2. Consider the term t = g(g(a, a), g(F(g(a, F(g(a, a)))), g(F(a), F(F(F(b))))). The counter of t is $cnt(F, h, a, t) = cnt(F, h, a, g(a, a)) + cnt(F, h, a, F(g(a, F(g(a, a))))) + cnt(F, h, a, g(F(a), F(F(F(b))))) = 2 + (h + 2 \cdot h^2) + h = 2 + 2 \cdot h + 2 \cdot h^2$. Thus, when h = 2 we get cnt(F, h, a, t) = 14. Observe $occ_{\Sigma}(a, t\{F \mapsto \lambda x.g(x, x)\}) = 14$.

The *n*-multiplier and *n*-counter functions differ in the following key aspects: the *n*-multiplier counts occurrences of a symbol occurring once in a given substitution with bound variable occurrences corresponding to $\overline{h_n}$, and the *n*-counter counts occurrences of a given symbol after applying the given substitution to a term.

Now we describe the relationship between the n-multiplier, n-counter, and the total occurrences of a given symbol.

Lemma 3.2. Let $c \in \Sigma^{\leq 1}$, t be a n-SOG term such that $\mathcal{V}_f(t) = \{F\}$, $h_1, \dots, h_n \geq 0$, and $\sigma = \{F \mapsto \lambda \overline{x_n}.s\}$ a substitution such that $\mathcal{V}_i(s) \subseteq \{\overline{x_n}\}$ and for all $1 \leq i \leq n \ occ(x_i, s) = h_i$. Then $occ(c, t\sigma) = occ(c, s) \cdot mul(F, \overline{h_n}, t) + cnt(F, \overline{h_n}, c, t)$.

This lemma captures an essential property of the n-multiplier and n-counter. This is again shown in the following example.

Example 3.3. Consider the term t = g(g(a, a), g(F(g(a, F(g(a, a)))), g(F(a), F(F(F(b)))))and substitution $\{F \mapsto \lambda x.g(a, g(x, x))\}$. The *n*-counter of *t* at 2 is cnt(F, 2, a, t) = 14 and the *n*-multiplier of *t* at 2 is mul(F, 2, t) = 11. Observe $occ_{\Sigma}(a, t\{F \mapsto \lambda x.g(a, g(x, x))\}) = 25$ and $occ(a, s) \cdot mul(F, 2, t) + cnt(F, 2, a, t) = 25$.

Up until now we considered arbitrary terms and substitutions. We now apply these results to unification problems and their solutions. In particular, a corollary of Lemma 3.2 is that there is a direct relation between the *n*-multiplier and *n*-counter of a unifiable unification problem given a unifier of the problem. The following lemma describes this relation.

Lemma 3.3 (Unification Condition). Let (\mathcal{U}, F) be a unifiable *n*-SOGU problem such that $\mathcal{V}_f(\mathcal{U}) = \{F\}, h_1, \cdots, h_n \geq 0$, and $\sigma = \{F \mapsto \lambda \overline{x_n}.s\}$ a unifier of (\mathcal{U}, F) such that $\mathcal{V}_i(s) = \{\overline{x_n}\}$ and for all $1 \leq i \leq n$, $occ(x, s) = h_i$. Then for all $c \in \Sigma^{\leq 1}$,

$$occ(c,s) \cdot (mul_l(F,\overline{h_n},\mathcal{U}) - mul_r(F,\overline{h_n},\mathcal{U})) = cnt_r(F,\overline{h_n},c,\mathcal{U}) - cnt_l(F,\overline{h_n},c,\mathcal{U}).$$
(1)

The *unification condition* is at the heart of the undecidability proof presented in Section 4. Essentially, Equation 1 relates the left and right side of a unification equation giving a necessary condition for unification. The following example shows an instance of this property.

Example 3.4. Consider the 1-SOGU problem $F(g(a, a)) \stackrel{?}{=}_F g(F(a), F(a))$ and the unifier $\sigma = \{F \mapsto \lambda x.g(x, x)\}$. Observe $occ(a, g(x, x)) \cdot ((mul_l(F, 2, F(g(a, a))) - mul_r(F, 2, g(F(a), F(a)))) = 0 \cdot (1-2) = 0$ and $cnt_r(F, h, a, g(F(a), F(a))) - cnt_l(F, h, a, F(g(a, a))) = 4 - 4 = 0$.

4 Undecidability n-SOGU

We now use the ideas from the previous section to encode Diophantine equations in unification problems. As a result, we are able to transfer undecidability results Diophantine equations to satisfying the following unification condition for *n*-SOGU: for a given $c \in \Sigma^{\leq 1}$ and *n*-SOGU problem (\mathcal{U}, F) , does there exists $\overline{h_n} \geq 0$ such that $cnt_r(F, \overline{h_n}, c, \mathcal{U}) = cnt_l(F, \overline{h_n}, c, \mathcal{U})$. This unification condition is a necessary condition for unifiability.

For the remainder of this section, we consider a finite signature Σ such that $\{g, a, b\} \subseteq \Sigma$, arity(g) = 2, and arity(a) = arity(b) = 0. By $p(\overline{x_n})$ we denote a polynomial with integer coefficients over the variables x_1, \dots, x_n ranging over the natural numbers and by $mono(p(\overline{x_n}))$ we denote the set of monomials of $p(\overline{x_n})$. Given a polynomial $p(\overline{x_n})$ and $1 \leq i \leq n$, if for all $m \in mono(p(\overline{x_n}))$, there exists a monomial m' such that $m = x_i \cdot m'$ then we say $div(p(\overline{x_n}), x_i)$. Furthermore, $deg(p(\overline{x_n})) = \max\{k \mid k \geq 0 \land m = x_i^k \cdot q(\overline{x_n}) \land 1 \leq i \leq n \land m \in mono(p(\overline{x_n}))\}$. Given a polynomial $p(\overline{x_n})$, a polynomial $p'(\overline{x_n})$ is a sub-polynomial of $p(\overline{x_n})$ if $mono(p'(\overline{x_n})) \subseteq mono(p(\overline{x_n}))$. Using the above definition we define distinct sub-polynomials based on divisibility by one of the input unknowns.

Definition 4.1 (monomial groupings). Let $p(\overline{x_n}) = q(\overline{x_n}) + c$ be a polynomial where $c \in \mathbb{Z}$, $0 \le j \le n$, and $S_j = \{m \mid m \in mono(p(\overline{x_n})) \land \forall i(1 \le i < j \Rightarrow \neg div(m, x_i))\}$. Then

- $p(\overline{x_n})_0 = c$,
- $p(\overline{x_n})_j = 0$ if there does not exists $m \in S_j$ such that $div(m, x_j)$,

• otherwise, $p(\overline{x_n})_j = p'(\overline{x_n})$, where $p'(\overline{x_n})$ is the sub-polynomial of $p(\overline{x_n})$ such that $mono(p'(\overline{x_n})) = \{m \mid m \in S_j \land div(m, x_j)\}.$

Furthermore, let $p(\overline{x_n})_j = x_j \cdot p'(\overline{x_n})$. Then $p(\overline{x_n})_j \downarrow = p'(\overline{x_n})$.

We now define a second-order term representation for arbitrary polynomials as follows:

Definition 4.2 (*n*-Converter). Let $p(\overline{x_n})$ be a polynomial and $F \in \mathcal{V}_f^n$. Then we define the positive (negative) second-order term representation of $p(\overline{x_n})$, as $cvt^+(F, p(\overline{x_n}))(cvt^-(F, p(\overline{x_n})))$, where cvt^+ (cvt^-) is defined recursively as follows:

- if $p(\overline{x_n}) = p(\overline{x_n})_0 = 0$, then $cvt^+(F, p(\overline{x_n})) = cvt^-(F, p(\overline{x_n})) = b$
- if $p(\overline{x_n}) = p(\overline{x_n})_0 = c \ge 1$, then
 - $cvt^+(F, p(\overline{x_n})) = t$ where $occ_{\Sigma}(a, t) = |p(\overline{x_n})_0| + 1$ and t is ground.

 $- cvt^{-}(F, p(\overline{x_n})) = t$ where $occ_{\Sigma}(a, t) = 1$ and t is ground.

• if $p(\overline{x_n}) = p(\overline{x_n})_0 < 0$, then

 $- cvt^{-}(F, p(\overline{x_n})) = t$ where $occ_{\Sigma}(a, t) = |p(\overline{x_n})_0| + 1$ and t is ground.

- $cvt^+(F, p(\overline{x_n})) = t$ where $occ_{\Sigma}(a, t) = 1$ and t is ground.
- if $p(\overline{x_n}) \neq p(\overline{x_n})_0$ and $p(\overline{x_n})_0 = 0$, then for all $\star \in \{+, -\},\$

$$cvt^{\star}(F, p(\overline{x_n})) = F(cvt^{\star}(F, p(\overline{x_n})_1 \downarrow), \cdots, cvt^{\star}(F, p(\overline{x_n})_n \downarrow))$$

- if $p(\overline{x_n}) \neq p(\overline{x_n})_0$ and $p(\overline{x_n})_0 \geq 1$, then
 - $cvt^{+}(F, p(\overline{x_{n}})) = g(t, F(cvt^{+}(F, p(\overline{x_{n}})_{1}\downarrow), \cdots, cvt^{+}(F, p(\overline{x_{n}})_{n}\downarrow)) \text{ where } occ_{\Sigma}(a, t) = p(\overline{x_{n}})_{0} \text{ and } t \text{ is ground.}$ $- cvt^{-}(F, p(\overline{x_{n}})) = F(cvt^{-}(F, p(\overline{x_{n}})_{1}\downarrow), \cdots, cvt^{-}(F, p(\overline{x_{n}})_{n}\downarrow))$
- if $p(\overline{x_n}) \neq p(\overline{x_n})_0$, and $p(\overline{x_n})_0 < 0$, then
 - $cvt^{-}(F, p(\overline{x_n})) = g(t, F(cvt^{-}(F, p(\overline{x_n})_1 \downarrow), \cdots, cvt^{-}(F, p(\overline{x_n})_n \downarrow)) \text{ where } occ_{\Sigma}(a, t) = p(\overline{x_n})_0 \text{ and } t \text{ is ground.}$
 - $cvt^{+}(F, p(\overline{x_{n}})) = F(cvt^{+}(F, p(\overline{x_{n}})_{1}\downarrow), \cdots, cvt^{+}(F, p(\overline{x_{n}})_{n}\downarrow))$

Intuitively, the *n*-converter takes a polynomial in *n* unknowns separates it into n+1 variable disjoint subpolynomials. Each of these subpolynomials is assigned to one of the arguments of the second-order variable (except the subpolynomial representing an integer constant) and the *n*-converter is called recursively on these subpolynomials. The process stops when all the subpolynomials are integers. Example 4.1 illustrates the construction of a term from a polynomial. Example 4.2 & 4.3 construct the *n*-multiplier and *n*-counter of the resulting term, respectively.

Example 4.1. Consider the polynomial $p(x, y) = 3 \cdot x^3 + xy - 2 \cdot y^2 - 2$. The positive and negative terms representing this polynomial are as follows:

$$\begin{aligned} & cvt^+(F,3\cdot x^3+xy-2\cdot y^2-2)=& F(F(F(g(g(a,a),g(a,a)),b),g(a,a)),F(b,a)), \\ & cvt^-(F,3\cdot x^3+xy-2\cdot y^2-2)=& g(g(a,a),F(F(F(a,b),a),F(b,g(a,g(a,a))))) \end{aligned}$$

Observe that the *n*-converter will always produce a flex-rigid unification equation as long as the input polynomial is of the form $p(\overline{x_n}) = p'(\overline{x_n}) + c$ where $c \in \mathbb{Z}$. When c = 0, we get a flex-flex unification equation and there is always a solution.

Example 4.2. Consider the term from Example 4.1. The *n*-multiplier is as follows: Thus, $mul(F, x, y, cvt^+(F, 3 \cdot x^3 + xy - 2 \cdot y^2 - 2)) = mul(F, x, y, cvt^-(F, 3 \cdot x^3 + xy - 2 \cdot y^2 - 2)) = 1 + x^2 + y.$

Example 4.3. Consider the term from Example 4.1. The *n*-counter is as follows:

$$\begin{array}{c} cnt(F,x,y,a,cvt^+(F,3\cdot x^3+xy-2\cdot y^2-2))=\!\!4\cdot x^3+2\cdot xy+y^2\\ cnt(F,x,y,a,cvt^-(F,3\cdot x^3+xy-2\cdot y^2-2))=\!\!x^3+xy+3\cdot y^2+2\\ cnt(F,x,y,a,cvt^+(F,p(x,y)))-cnt(F,x,y,a,cvt^-(F,p(x,y)))=\!\!3x^3+xy-2\cdot y^2-2\end{array}$$

Using the operator defined in Definition 4.2, we can transform a polynomial with integer coefficients into a *n*-SOGU problem. The next definition describes the process:

Definition 4.3. Let $p(\overline{x_n})$ be a polynomial and $F \in \mathcal{V}_f^n$. Then (\mathcal{U}, F) is the *n*-SOGU problem induced by $p(\overline{x_n})$ where $\mathcal{U} = \{ cvt^-(F, p(\overline{x_n})) \stackrel{?}{=}_F cvt^+(F, p(\overline{x_n})) \}.$

The result of this translation is that the n-counter captures the structure of the polynomial and the n-multipliers cancel out.

Lemma 4.1. Let $n \ge 1$, $p(\overline{x_n})$ be a polynomial, and (\mathcal{U}, F) an *n*-SOGU problem induced by $p(\overline{x_n})$ where $\mathcal{U} = \{ cvt^-(F, p(\overline{x_n})) \stackrel{?}{=}_F cvt^+(F, p(\overline{x_n})) \}$. Then

$$p(\overline{x_n}) = cnt_r(F, \overline{x_n}, a, \mathcal{U}) - cnt_l(F, \overline{x_n}, a, \mathcal{U}) \text{ and } 0 = mul_l(F, \overline{x_n}, \mathcal{U}) - mul_r(F, \overline{x_n}, \mathcal{U}).$$

A simply corollary of Lemma 4.1 concerns commutativity of unification equations:

Corollary 4.1. Let $n \ge 1$, $p(\overline{x_n})$ be a polynomial, and $(\{s \stackrel{?}{=} t\}, F)$ an *n*-SOGU problem induced by $p(\overline{x_n})$. Then $-p(\overline{x_n}) = cnt_r(F, \overline{x_n}, a, \{t \stackrel{?}{=} s\}) - cnt_l(F, \overline{x_n}, a, \{t \stackrel{?}{=} s\}).$

Both $p(\overline{x_n})$ and $-p(\overline{x_n})$ have the same roots and the induced unification problem cannot be further reduced without substituting into F, thus the induced unification problem uniquely captures the polynomial $p(\overline{x_n})$. We now prove that the unification condition as introduced in Lemma 3.3 is equivalent to finding the solutions to polynomial equations. The following shows how a solution to a polynomial can be obtained from the unification condition and vice versa.

Lemma 4.2. Let $p(\overline{x_n})$ be a polynomial and (\mathcal{U}, F) the *n*-SOGU problem induced by $p(\overline{x_n})$ using the $c \in \Sigma^{\leq 1}$ (Definition 4.2). Then there exists $h_1, \dots, h_n \geq 0$ such that $cnt_l(F, \overline{h_n}, c, \mathcal{U}) = cnt_r(F, \overline{h_n}, c, \mathcal{U})$ (unification condition) if and only if $\{x_i \mapsto h_i \mid 1 \leq i \leq n \wedge h_i \in \mathbb{N}\}$ is a solution to $p(\overline{x_n}) = 0$.

Using Lemma 4.2, we now show that finding $h_1, \dots, h_n \geq 0$ such that the *unification* condition holds is undecidable by reducing solving $p(\overline{x_n}) = 0$ for arbitrary polynomials over \mathbb{N} (Theorem 2.1) to finding $h_1, \dots, h_n \geq 0$ which satisfy the *unification* condition.

Lemma 4.3 (Equalizer Problem). For a given *n*-SOGU problem, finding $h_1, \dots, h_n \ge 0$ such that the *unification condition* (Lemma 3.3) holds is undecidable.

Theorem 4.1. There exists $n \ge 1$ such that *n*-SOGU is undecidable.

We prove Theorem 4.1 by assuming n-SOGU is decidable and using this assumption to show that the Equalizer Problem must be decidable, thus resulting in a contradiction.

In particular, we answer the question posed in Section 1 by proving that first-order variables occurrence does not impact the decidability of second-order unification.

References

- Jordi Levy. On the limits of second-order unification. In Temur Kutsia and Christophe Ringeissen, editors, Proceedings of the 28th International Workshop on Unification, UNIF 2014, Vienna, Austria, July 13, 2014, pages 5–14, 2014.
- [2] Jordi Levy and Margus Veanes. On the undecidability of second-order unification. Inf. Comput., 159(1-2):125–150, 2000.
- [3] Yuri V. Matiyasevich. Hilbert's tenth problem. MIT Press, Cambridge, MA, USA, 1993.