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Abstract

We consider the fragment of Second-Order unification with the following properties:
(i) only one second-order variable allowed, (ii) first-order variables do not occur. We show
that Hilbert’s 10th problem is reducible to this fragment if the signature contains a binary
function symbol and two constants. This generalizes known undecidability results. 1

1 Introduction

In the 2014 addition of the unification workshop Levy [1] provided a comprehensive survey of
decidability and undecidability results for second-order unification. While second-order unifi-
cation without first-order variables was considered [2], 2 second-order variables were required
to show undecidability. Furthermore, investigations proving undecidability of second-order uni-
fication with 1 second-order variable required first-order variables [2]. We generalize these
result by showing one second-order variable is enough undecidability (no first-order variables).
Proofs of all significant lemmas and theorems may be found in the arxiv version of the pa-
per arxiv.org/abs/2404.10616.

2 Preliminaries

We consider a finite signature Σ = {f1, · · · , fn, c1, · · · , cm} where n,m ≥ 1, for 1 ≤ i ≤ n,
the arity of fi is denoted arity(fi) ≥ 1, and for all 1 ≤ j ≤ m, the arity of cj is denoted
arity(cj) = 0 (constants). Furthermore, let Σ≤1 ⊆ Σ be the set of base symbols defined as
Σ≤1 = {c | c ∈ Σ ∧ arity(c) ≤ 1}.

By V we denote a countably infinite set of variables. Furthermore, let Vi,Vf ⊂ V such that
Vi ∩ Vf = ∅. We refer to members of Vi as individual variables, denoted by x,y,z, · · · and
members of Vf as function variables, denoted by F,G,H, · · · . Members of Vf have an arity ≥ 1
which we denote by arity(F ) where F ∈ Vf . By Vn

f , where n ≥ 1, we denote the set of all
function variables with arity n. We will use h to denote a symbol in V ∪Σ when doing so would
not cause confusion.

We refer to members of the term algebra T (Σ,V), as terms. By Vi(t) and Vf (t) (Vn
f (t)

for n ≥ 1) we denote the set of individual variables and function variables (with arity = n)
occurring in t, respectively. We refer to a term t as n-second-order ground (n-SOG) if Vi(t) = ∅,
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Vf (t) ̸= ∅ with Vf (t) ⊂ Vn
f , first-order if Vf (t) = ∅, and ground if t is first-order and Vi(t) = ∅.

The sets of n-SOG, first-order, and ground terms are denoted T n
SO, TFO, and TG, respectively.

When possible, without causing confusion, we will abbreviate a sequence of terms t1, · · · , tn by
tn where n ≥ 0.

The set of positions of a term t, denoted by pos(t), is a set of strings of positive integers,
defined as pos(h(t1, . . . , tn)) = {ϵ} ∪

⋃n
i=1{i.p | p ∈ pos(ti)}, t1, . . . , tn are terms, and ϵ denotes

the empty string. For example, the term at position 1.1.2 of g(f(x, a)) is a. Given a term t and
p ∈ pos(t), then t|p denotes the subterm of t at position p. Given a term t and p, q ∈ pos(t),
we write p ⊑ q if q = p.q′ and p ⊏ q if p ⊑ q and p ̸= q. The set of subterms of a term t is
defined as sub(t) = {t|p | p ∈ pos(t)}. The head of a term t is defined as head(h(t1, . . . , tn)) = h,
for n ≥ 0. The number of occurrences of a term s in a term t is defined as occ(s, t) = |{p |
s = t|p ∧ p ∈ pos(t)}|. The number of occurrences of a symbol h in a term t is defined as
occΣ(h, t) = |{p | h = head(t|p) ∧ p ∈ pos(t)}|.

A n-second-order ground (n-SOG) unification equation has the form u
?
=F v where u and

v are n-SOG terms and F ∈ Vn
f such that Vf (u) = {F} and Vf (v) = {F}. A n-second-order

ground unification problem (n-SOGU problem) is a pair (U , F ) where U is a set of n-SOG

unification equations and F ∈ Vn
f such that for all u

?
=G v ∈ U , G = F . Recall from the

definition of n-SOG that Vi(u) = Vi(v) = ∅.
A substitution is set of bindings of the form {F1 7→ λyl1 .t1, · · ·Fk 7→ λylk .tk, x1 7→

s1, · · · , xw 7→ sw} where k,w ≥ 0, for all 1 ≤ i ≤ k, ti is first-order and Vi(ti) ⊆ {y1, · · · , yli},
arity(Fi) = li, and for all 1 ≤ i ≤ w, si is ground. Given a substitution σ, domf (σ) = {F | F 7→
λxn.t ∈ σ ∧ F ∈ Vn

f } and domi(σ) = {x | x 7→ t ∈ Σ ∧ x ∈ Vi}. We refer to a substitution σ
as second-order when domi(σ) = ∅ and first-order when domf (σ) = ∅. We use postfix notation
for substitution applications, writing tσ instead of σ(t). Substitutions are denoted by lowercase
Greek letters. As usual, the application tσ affects only the free variable occurrences of t whose
free variable is found in domi(σ) and domf (σ). A substitution σ is a unifier of an n-SOGU

problem (U , F ), if domf (σ) = {F}, domi(σ) = ∅, and for all u
?
=F v ∈ U , uσ =αβ vσ.

We will use the following theorem due to Matiyasevich, Robinson, Davis, and Putnam, in
later sections.

Theorem 2.1 (Hilberts 10th problem or Matiyasevich–Robinson–Davis–Putnam theorem [3]).
Given a polynomial p(x) with integer coefficients, finding integer solutions to p(x) = 0 is
undecidable.

3 n-Multipliers and n-Counters

In this section, we define and discuss the n-multiplier and n-counter functions, which allow us to
encode number-theoretic problems in second-order unification. These functions are motivated
by the following simple observation about n-SOGU.

Lemma 3.1. Let (U , F ) be a unifiable n-SOGU problem, and σ a unifier of (U , F ). Then for

all c ∈ Σ≤1 and u
?
=F v ∈ U , occΣ(c, uσ) = occΣ(c, vσ).

Definition 3.1 (n-Mutiplier). Let t be a n-SOG term such that Vf (t) ⊆ {F} and F ∈ Vn
f and

h1, · · · , hn ≥ 0. Then we define mul(F, hn, t) recursively as follows:

• if t = b and arity(b) = 0, then mul(F, hn, t) = 0.

• if t = f(t1, · · · , tl), then mul(F, hn, t) =
∑l

j=1 mul(F, hn, tj)
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• if t = F (tn), then mul(F, hn, t) = 1 +
∑n

i=1 hi ·mul(F, hn, ti)

Furthermore, let (U , F ) be an n-SOGU problem then, mul l(F, hn,U) =
∑

u
?
=F v∈U

mul(F, hn, u)

and mulr(F, hn,U) =
∑

u
?
=F v∈U

mul(F, hn, v).

The n-multiplier captures the following property of a term: let t be a n-SOG term such that
Vf (t) ⊆ {F}, f ∈ Σ, and σ = {F 7→ λxn.s} a substitution where occΣ(f, s) ≥ 0, Vi(s) ⊆ {xn},
and for all 1 ≤ i ≤ n, occ(xi, s) = hi. Then occΣ(f, tσ) ≥ occΣ(f, s) · mul(F, hn, t) where the
hn capture the duplication of the arguments to F . The following presents this idea using a
concrete example.

Example 3.1. Consider the term t = g(F (g(a, F (s(a)))), g(F (a), F (F (F (b))))). Then the n-
multiplier of t is mul(F, h, t) = mul(F, h, F (g(a, F (s(a))))) +mul(F, h, g(F (a), F (F (F (b))))) =
(1 + h) + (1 + (1 + h · (1 + h))) = 3 + 2 · h + h2. Thus, when h = 2 we get mul(F, h, t) = 11.
Observe occΣ(g

′, t{F 7→ λx.g′(x, x)}) = 11.

Next, we introduce the n-counter function. Informally, given an n-SOG term t such that
Vf (t) ⊆ {F}, a symbol c ∈ Σ≤1, and a substitution σ with domf (σ) = {F}, the n-counter
captures number of occurrences of c in tσ.

Definition 3.2 (n-Counter). Let c ∈ Σ≤1, t be a n-SOG term such that Vf (t) = {F} and
F ∈ Vn

f , and h1, · · · , hn ≥ 0. Then we define cnt(F, hn, c, t) recursively as follows:

• if t = b, arity(b) = 0, and b ̸= c , then cnt(F, hn, c, t) = 0.

• if t = f(tl) and f ̸= c, then cnt(F, hn, c, t) =
∑l

j=1 cnt(F, hn, c, tj).

• if t = c(t), then cnt(F, hn, c, c(t)) = 1 + cnt(F, hn, c, t)

• if t = F (tn), then cnt(F, hn, c, t) =
∑n

i=1 hi · cnt(F, hn, c, ti)

Furthermore, let (U , F ) be a n-SOGU problem them, cnt l(F, hn, c,U) =
∑

u
?
=F v∈U

cnt(F, hn, c, u)

and cntr(F, hn, c,U) =
∑

u
?
=F v∈U

cnt(F, hn, c, v).

The n-counter captures how many occurrences of a given constant or monadic function
symbol will occur in a term tσ where Vf (t) = {F}, σ = {F 7→ λxn.s}, Vi(s) ⊆ {xn}, and for
all 1 ≤ i ≤ n, occ(xi, s) = hi A concrete instance is presented in Example 3.2.

Example 3.2. Consider the term t = g(g(a, a), g(F (g(a, F (g(a, a)))), g(F (a), F (F (F (b))))).
The counter of t is cnt(F, h, a, t) = cnt(F, h, a, g(a, a)) + cnt(F, h, a, F (g(a, F (g(a, a))))) +
cnt(F, h, a, g(F (a), F (F (F (b))))) = 2 + (h + 2 · h2) + h = 2 + 2 · h + 2 · h2. Thus, when
h = 2 we get cnt(F, h, a, t) = 14. Observe occΣ(a, t{F 7→ λx.g(x, x)}) = 14.

The n-multiplier and n-counter functions differ in the following key aspects: the n-multiplier
counts occurrences of a symbol occurring once in a given substitution with bound variable
occurrences corresponding to hn, and the n-counter counts occurrences of a given symbol after
applying the given substitution to a term.

Now we describe the relationship between the n-multiplier, n-counter, and the total occur-
rences of a given symbol.

Lemma 3.2. Let c ∈ Σ≤1, t be a n-SOG term such that Vf (t) = {F}, h1, · · · , hn ≥ 0, and
σ = {F 7→ λxn.s} a substitution such that Vi(s) ⊆ {xn} and for all 1 ≤ i ≤ n occ(xi, s) = hi.
Then occ(c, tσ) = occ(c, s) ·mul(F, hn, t) + cnt(F, hn, c, t).
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This lemma captures an essential property of the n-multiplier and n-counter. This is again
shown in the following example.

Example 3.3. Consider the term t = g(g(a, a), g(F (g(a, F (g(a, a)))), g(F (a), F (F (F (b)))))
and substitution {F 7→ λx.g(a, g(x, x))}. The n-counter of t at 2 is cnt(F, 2, a, t) = 14 and the
n-multiplier of t at 2 is mul(F, 2, t) = 11. Observe occΣ(a, t{F 7→ λx.g(a, g(x, x))}) = 25 and
occ(a, s) ·mul(F, 2, t) + cnt(F, 2, a, t) = 25.

Up until now we considered arbitrary terms and substitutions. We now apply these results
to unification problems and their solutions. In particular, a corollary of Lemma 3.2 is that there
is a direct relation between the n-multiplier and n-counter of a unifiable unification problem
given a unifier of the problem. The following lemma describes this relation.

Lemma 3.3 (Unification Condition). Let (U , F ) be a unifiable n-SOGU problem such that
Vf (U) = {F}, h1, · · · , hn ≥ 0, and σ = {F 7→ λxn.s} a unifier of (U , F ) such that Vi(s) = {xn}
and for all 1 ≤ i ≤ n, occ(x, s) = hi. Then for all c ∈ Σ≤1,

occ(c, s) · (mul l(F, hn,U)−mulr(F, hn,U)) = cntr(F, hn, c,U)− cnt l(F, hn, c,U). (1)

The unification condition is at the heart of the undecidability proof presented in Section 4.
Essentially, Equation 1 relates the left and right side of a unification equation giving a necessary
condition for unification. The following example shows an instance of this property.

Example 3.4. Consider the 1-SOGU problem F (g(a, a))
?
=F g(F (a), F (a)) and the unifier σ =

{F 7→ λx.g(x, x)}. Observe occ(a, g(x, x))·((mul l(F, 2, F (g(a, a)))−mulr(F, 2, g(F (a), F (a)))) =
0 · (1− 2) = 0 and cntr(F, h, a, g(F (a), F (a)))− cnt l(F, h, a, F (g(a, a))) = 4− 4 = 0.

4 Undecidability n-SOGU

We now use the ideas from the previous section to encode Diophantine equations in unification
problems. As a result, we are able to transfer undecidability results Diophantine equations to
satisfying the following unification condition for n-SOGU: for a given c ∈ Σ≤1 and n-SOGU
problem (U , F ), does there exists hn ≥ 0 such that cntr(F, hn, c,U) = cnt l(F, hn, c,U). This
unification condition is a necessary condition for unifiability.

For the remainder of this section, we consider a finite signature Σ such that {g, a, b} ⊆ Σ,
arity(g) = 2, and arity(a) = arity(b) = 0. By p(xn) we denote a polynomial with integer
coefficients over the variables x1, · · · , xn ranging over the natural numbers and by mono(p(xn))
we denote the set of monomials of p(xn). Given a polynomial p(xn) and 1 ≤ i ≤ n, if for all
m ∈ mono(p(xn)), there exists a monomial m′ such that m = xi ·m′ then we say div(p(xn), xi).
Furthermore, deg(p(xn)) = max{k | k ≥ 0 ∧m = xk

i · q(xn) ∧ 1 ≤ i ≤ n ∧m ∈ mono(p(xn))}.
Given a polynomial p(xn), a polynomial p′(xn) is a sub-polynomial of p(xn) if mono(p′(xn)) ⊆
mono(p(xn)). Using the above definition we define distinct sub-polynomials based on divisibility
by one of the input unknowns.

Definition 4.1 (monomial groupings). Let p(xn) = q(xn) + c be a polynomial where c ∈ Z,
0 ≤ j ≤ n, and Sj = {m | m ∈ mono(p(xn)) ∧ ∀i(1 ≤ i < j ⇒ ¬div(m,xi))}. Then

• p(xn)0 = c,

• p(xn)j = 0 if there does not exists m ∈ Sj such that div(m,xj),
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• otherwise, p(xn)j = p′(xn), where p′(xn) is the sub-polynomial of p(xn) such that
mono(p′(xn)) = {m | m ∈ Sj ∧ div(m,xj)}.

Furthermore, let p(xn)j = xj · p′(xn). Then p(xn)j ↓= p′(xn).

We now define a second-order term representation for arbitrary polynomials as follows:

Definition 4.2 (n-Converter). Let p(xn) be a polynomial and F ∈ Vn
f . Then we define the pos-

itive (negative) second-order term representation of p(xn), as cvt+(F, p(xn))(cvt
−(F, p(xn))),

where cvt+ (cvt−) is defined recursively as follows:

• if p(xn) = p(xn)0 = 0, then cvt+(F, p(xn)) = cvt−(F, p(xn)) = b

• if p(xn) = p(xn)0 = c ≥ 1, then

– cvt+(F, p(xn)) = t where occΣ(a, t) = |p(xn)0|+ 1 and t is ground.

– cvt−(F, p(xn)) = t where occΣ(a, t) = 1 and t is ground.

• if p(xn) = p(xn)0 < 0, then

– cvt−(F, p(xn)) = t where occΣ(a, t) = |p(xn)0|+ 1 and t is ground.

– cvt+(F, p(xn)) = t where occΣ(a, t) = 1 and t is ground.

• if p(xn) ̸= p(xn)0and p(xn)0 = 0, then for all ⋆ ∈ {+,−},

cvt⋆(F, p(xn)) = F (cvt⋆(F, p(xn)1 ↓), · · · , cvt⋆(F, p(xn)n ↓))

• if p(xn) ̸= p(xn)0and p(xn)0 ≥ 1, then

– cvt+(F, p(xn)) = g(t, F (cvt+(F, p(xn)1 ↓), · · · , cvt+(F, p(xn)n ↓)) where occΣ(a, t) =
p(xn)0 and t is ground.

– cvt−(F, p(xn)) = F (cvt−(F, p(xn)1 ↓), · · · , cvt−(F, p(xn)n ↓))

• if p(xn) ̸= p(xn)0, and p(xn)0 < 0, then

– cvt−(F, p(xn)) = g(t, F (cvt−(F, p(xn)1 ↓), · · · , cvt−(F, p(xn)n ↓)) where occΣ(a, t) =
p(xn)0 and t is ground.

– cvt+(F, p(xn)) = F (cvt+(F, p(xn)1 ↓), · · · , cvt+(F, p(xn)n ↓))

Intuitively, the n-converter takes a polynomial in n unknowns separates it into n+1 variable
disjoint subpolynomials. Each of these subpolynomials is assigned to one of the arguments of
the second-order variable (except the subpolynomial representing an integer constant) and
the n-converter is called recursively on these subpolynomials. The process stops when all
the subpolynomials are integers. Example 4.1 illustrates the construction of a term from a
polynomial. Example 4.2 & 4.3 construct the n-multiplier and n-counter of the resulting term,
respectively.

Example 4.1. Consider the polynomial p(x, y) = 3 · x3 + xy − 2 · y2 − 2. The positive and
negative terms representing this polynomial are as follows:

cvt+(F, 3 · x3 + xy − 2 · y2 − 2) =F (F (F (g(g(a, a), g(a, a)), b), g(a, a)), F (b, a))

cvt−(F, 3 · x3 + xy − 2 · y2 − 2) =g(g(a, a), F (F (F (a, b), a), F (b, g(a, g(a, a))))
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Observe that the n-converter will always produce a flex-rigid unification equation as long
as the input polynomial is of the form p(xn) = p′(xn) + c where c ∈ Z. When c = 0, we get a
flex-flex unification equation and there is always a solution.

Example 4.2. Consider the term from Example 4.1. The n-multiplier is as follows:
Thus, mul(F, x, y, cvt+(F, 3 ·x3+xy−2 ·y2−2)) = mul(F, x, y, cvt−(F, 3 ·x3+xy−2 ·y2−2)) =
1 + x2 + y.

Example 4.3. Consider the term from Example 4.1. The n-counter is as follows:

cnt(F, x, y, a, cvt+(F, 3 · x3 + xy − 2 · y2 − 2)) =4 · x3 + 2 · xy + y2

cnt(F, x, y, a, cvt−(F, 3 · x3 + xy − 2 · y2 − 2)) =x3 + xy + 3 · y2 + 2

cnt(F, x, y, a, cvt+(F, p(x, y)))− cnt(F, x, y, a, cvt−(F, p(x, y))) =3x3 + xy − 2 · y2 − 2

Using the operator defined in Definition 4.2, we can transform a polynomial with integer
coefficients into a n-SOGU problem. The next definition describes the process:

Definition 4.3. Let p(xn) be a polynomial and F ∈ Vn
f . Then (U , F ) is the n-SOGU problem

induced by p(xn) where U = {cvt−(F, p(xn))
?
=F cvt+(F, p(xn))}.

The result of this translation is that the n-counter captures the structure of the polynomial
and the n-multipliers cancel out.

Lemma 4.1. Let n ≥ 1, p(xn) be a polynomial, and (U , F ) an n-SOGU problem induced by

p(xn) where U = {cvt−(F, p(xn))
?
=F cvt+(F, p(xn))}. Then

p(xn) = cntr(F, xn, a,U)− cnt l(F, xn, a,U) and 0 = mul l(F, xn,U)−mulr(F, xn,U).

A simply corollary of Lemma 4.1 concerns commutativity of unification equations:

Corollary 4.1. Let n ≥ 1, p(xn) be a polynomial, and ({s ?
= t}, F ) an n-SOGU problem

induced by p(xn). Then −p(xn) = cntr(F, xn, a, {t
?
= s})− cnt l(F, xn, a, {t

?
= s}).

Both p(xn) and −p(xn) have the same roots and the induced unification problem cannot
be further reduced without substituting into F , thus the induced unification problem uniquely
captures the polynomial p(xn). We now prove that the unification condition as introduced in
Lemma 3.3 is equivalent to finding the solutions to polynomial equations. The following shows
how a solution to a polynomial can be obtained from the unification condition and vice versa.

Lemma 4.2. Let p(xn) be a polynomial and (U , F ) the n-SOGU problem induced by p(xn)
using the c ∈ Σ≤1(Definition 4.2). Then there exists h1, · · · , hn ≥ 0 such that cnt l(F, hn, c,U) =
cntr(F, hn, c,U) (unification condition) if and only if {xi 7→ hi | 1 ≤ i ≤ n∧hi ∈ N} is a solution
to p(xn) = 0.

Using Lemma 4.2, we now show that finding h1, · · · , hn ≥ 0 such that the unification
condition holds is undecidable by reducing solving p(xn) = 0 for arbitrary polynomials over N
(Theorem 2.1) to finding h1, · · · , hn ≥ 0 which satisfy the unification condition.

Lemma 4.3 (Equalizer Problem). For a given n-SOGU problem, finding h1, · · · , hn ≥ 0 such
that the unification condition (Lemma 3.3) holds is undecidable.

Theorem 4.1. There exists n ≥ 1 such that n-SOGU is undecidable.

We prove Theorem 4.1 by assuming n-SOGU is decidable and using this assumption to show
that the Equalizer Problem must be decidable, thus resulting in a contradiction.

In particular, we answer the question posed in Section 1 by proving that first-order variables
occurrence does not impact the decidability of second-order unification.
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