One is all you need: Second-order Unification without First-order Variables *

David M. Cerna ${ }^{1}$ and Julian Parsert ${ }^{23}$
${ }^{1}$ Czech Academy of Sciences, Prague, Czechia
dcerna@cs.cas.cz
${ }^{2}$ University of Oxford, United Kingdom
${ }^{3}$ University of Innsbruck, Austria
julian.parsert@gmail.com

Abstract

We consider the fragment of Second-Order unification with the following properties: (i) only one second-order variable allowed, (ii) first-order variables do not occur. We show that Hilbert's $10^{t h}$ problem is reducible to this fragment if the signature contains a binary function symbol and two constants. This generalizes known undecidability results. ${ }^{1}$

1 Introduction

In the 2014 addition of the unification workshop Levy [1] provided a comprehensive survey of decidability and undecidability results for second-order unification. While second-order unification without first-order variables was considered [2], 2 second-order variables were required to show undecidability. Furthermore, investigations proving undecidability of second-order unification with 1 second-order variable required first-order variables [2]. We generalize these result by showing one second-order variable is enough undecidability (no first-order variables). Proofs of all significant lemmas and theorems may be found in the arxiv version of the paper arxiv.org/abs/2404.10616.

2 Preliminaries

We consider a finite signature $\Sigma=\left\{f_{1}, \cdots, f_{n}, c_{1}, \cdots, c_{m}\right\}$ where $n, m \geq 1$, for $1 \leq i \leq n$, the arity of f_{i} is denoted $\operatorname{arity}\left(f_{i}\right) \geq 1$, and for all $1 \leq j \leq m$, the arity of c_{j} is denoted $\operatorname{arity}\left(c_{j}\right)=0$ (constants). Furthermore, let $\Sigma \leq 1 \subseteq \Sigma$ be the set of base symbols defined as $\Sigma^{\leq 1}=\{c \mid c \in \Sigma \wedge \operatorname{arity}(c) \leq 1\}$.

By \mathcal{V} we denote a countably infinite set of variables. Furthermore, let $\mathcal{V}_{i}, \mathcal{V}_{f} \subset \mathcal{V}$ such that $\mathcal{V}_{i} \cap \mathcal{V}_{f}=\emptyset$. We refer to members of \mathcal{V}_{i} as individual variables, denoted by x, y, z, \cdots and members of \mathcal{V}_{f} as function variables, denoted by $\mathrm{F}, \mathrm{G}, \mathrm{H}, \cdots$. Members of \mathcal{V}_{f} have an arity ≥ 1 which we denote by $\operatorname{arity}(F)$ where $F \in \mathcal{V}_{f}$. By \mathcal{V}_{f}^{n}, where $n \geq 1$, we denote the set of all function variables with arity n. We will use h to denote a symbol in $\mathcal{V} \cup \Sigma$ when doing so would not cause confusion.

We refer to members of the term algebra $\mathcal{T}(\Sigma, \mathcal{V})$, as terms. By $\mathcal{V}_{i}(t)$ and $\mathcal{V}_{f}(t)\left(\mathcal{V}_{f}^{n}(t)\right.$ for $n \geq 1$) we denote the set of individual variables and function variables (with arity $=n$) occurring in t, respectively. We refer to a term t as n-second-order ground (n-SOG) if $\mathcal{V}_{i}(t)=\emptyset$,

[^0]$\mathcal{V}_{f}(t) \neq \emptyset$ with $\mathcal{V}_{f}(t) \subset \mathcal{V}_{f}^{n}$, first-order if $\mathcal{V}_{f}(t)=\emptyset$, and ground if t is first-order and $\mathcal{V}_{i}(t)=\emptyset$. The sets of n-SOG, first-order, and ground terms are denoted $\mathcal{T}_{S O}^{n}, \mathcal{T}_{F O}$, and \mathcal{T}_{G}, respectively. When possible, without causing confusion, we will abbreviate a sequence of terms t_{1}, \cdots, t_{n} by $\overline{t_{n}}$ where $n \geq 0$.

The set of positions of a term t, denoted by $\operatorname{pos}(t)$, is a set of strings of positive integers, defined as $\operatorname{pos}\left(\mathrm{h}\left(t_{1}, \ldots, t_{n}\right)\right)=\{\epsilon\} \cup \bigcup_{i=1}^{n}\left\{i . p \mid p \in \operatorname{pos}\left(t_{i}\right)\right\}, t_{1}, \ldots, t_{n}$ are terms, and ϵ denotes the empty string. For example, the term at position 1.1.2 of $g(f(x, a))$ is a. Given a term t and $p \in \operatorname{pos}(t)$, then $\left.t\right|_{p}$ denotes the subterm of t at position p. Given a term t and $p, q \in \operatorname{pos}(t)$, we write $p \sqsubseteq q$ if $q=p \cdot q^{\prime}$ and $p \sqsubset q$ if $p \sqsubseteq q$ and $p \neq q$. The set of subterms of a term t is defined as $\operatorname{sub}(t)=\left\{\left.t\right|_{p} \mid p \in \operatorname{pos}(t)\right\}$. The head of a term t is defined as $\operatorname{head}\left(\mathrm{h}\left(t_{1}, \ldots, t_{n}\right)\right)=\mathrm{h}$, for $n \geq 0$. The number of occurrences of a term s in a term t is defined as occ $(s, t)=\mid\{p \mid$ $\left.s=\left.t\right|_{p} \wedge p \in \operatorname{pos}(t)\right\} \mid$. The number of occurrences of a symbol h in a term t is defined as $\operatorname{occ}_{\Sigma}(\mathrm{h}, t)=\left|\left\{p \mid \mathrm{h}=\operatorname{head}\left(\left.t\right|_{p}\right) \wedge p \in \operatorname{pos}(t)\right\}\right|$.

A n-second-order ground (n-SOG) unification equation has the form $u{ }^{?}{ }_{F} v$ where u and v are n-SOG terms and $F \in \mathcal{V}_{f}^{n}$ such that $\mathcal{V}_{f}(u)=\{F\}$ and $\mathcal{V}_{f}(v)=\{F\}$. A n-second-order ground unification problem (n-SOGU problem) is a pair (\mathcal{U}, F) where \mathcal{U} is a set of n-SOG unification equations and $F \in \mathcal{V}_{f}^{n}$ such that for all $u \stackrel{?}{=}_{G} v \in \mathcal{U}, G=F$. Recall from the definition of n-SOG that $\mathcal{V}_{i}(u)=\mathcal{V}_{i}(v)=\emptyset$.

A substitution is set of bindings of the form $\left\{F_{1} \mapsto \lambda \overline{y_{l_{1}}} \cdot t_{1}, \cdots F_{k} \mapsto \lambda \overline{y_{l_{k}}} \cdot t_{k}, x_{1} \mapsto\right.$ $\left.s_{1}, \cdots, x_{w} \mapsto s_{w}\right\}$ where $k, w \geq 0$, for all $1 \leq i \leq k, t_{i}$ is first-order and $\mathcal{V}_{i}\left(t_{i}\right) \subseteq\left\{y_{1}, \cdots, y_{l_{i}}\right\}$, $\operatorname{arity}\left(F_{i}\right)=l_{i}$, and for all $1 \leq i \leq w, s_{i}$ is ground. Given a substitution $\sigma, \operatorname{dom}_{f}(\sigma)=\{F \mid F \mapsto$ $\left.\lambda \overline{x_{n}} . t \in \sigma \wedge F \in \mathcal{V}_{f}^{n}\right\}$ and $\operatorname{dom}_{i}(\sigma)=\left\{x \mid x \mapsto t \in \Sigma \wedge x \in \mathcal{V}_{i}\right\}$. We refer to a substitution σ as second-order when $\operatorname{dom}_{i}(\sigma)=\emptyset$ and first-order when $\operatorname{dom}_{f}(\sigma)=\emptyset$. We use postfix notation for substitution applications, writing $t \sigma$ instead of $\sigma(t)$. Substitutions are denoted by lowercase Greek letters. As usual, the application $t \sigma$ affects only the free variable occurrences of t whose free variable is found in $\operatorname{dom}_{i}(\sigma)$ and $\operatorname{dom}_{f}(\sigma)$. A substitution σ is a unifier of an n-SOGU $\operatorname{problem}(\mathcal{U}, F)$, if $\operatorname{dom}_{f}(\sigma)=\{F\}, \operatorname{dom}_{i}(\sigma)=\emptyset$, and for all $u \stackrel{?}{=}_{F} v \in \mathcal{U}, u \sigma={ }_{\alpha \beta} v \sigma$.

We will use the following theorem due to Matiyasevich, Robinson, Davis, and Putnam, in later sections.

Theorem 2.1 (Hilberts $10^{t h}$ problem or Matiyasevich-Robinson-Davis-Putnam theorem [3]). Given a polynomial $p(\bar{x})$ with integer coefficients, finding integer solutions to $p(\bar{x})=0$ is undecidable.

3 n-Multipliers and n-Counters

In this section, we define and discuss the n-multiplier and n-counter functions, which allow us to encode number-theoretic problems in second-order unification. These functions are motivated by the following simple observation about n-SOGU .

Lemma 3.1. Let (\mathcal{U}, F) be a unifiable n-SOGU problem, and σ a unifier of (\mathcal{U}, F). Then for all $c \in \Sigma \leq 1$ and $u \stackrel{?}{=}_{F} v \in \mathcal{U}$, occ $c_{\Sigma}(c, u \sigma)=o c c_{\Sigma}(c, v \sigma)$.

Definition 3.1 (n-Mutiplier). Let t be a n-SOG term such that $\mathcal{V}_{f}(t) \subseteq\{F\}$ and $F \in \mathcal{V}_{f}^{n}$ and $h_{1}, \cdots, h_{n} \geq 0$. Then we define $\operatorname{mul}\left(F, \overline{h_{n}}, t\right)$ recursively as follows:

- if $t=b$ and $\operatorname{arity}(b)=0$, then $\operatorname{mul}\left(F, \overline{h_{n}}, t\right)=0$.
- if $t=f\left(t_{1}, \cdots, t_{l}\right)$, then $\operatorname{mul}\left(F, \overline{h_{n}}, t\right)=\sum_{j=1}^{l} \operatorname{mul}\left(F, \overline{h_{n}}, t_{j}\right)$
- if $t=F\left(\overline{t_{n}}\right)$, then $\operatorname{mul}\left(F, \overline{h_{n}}, t\right)=1+\sum_{i=1}^{n} h_{i} \cdot \operatorname{mul}\left(F, \overline{h_{n}}, t_{i}\right)$

Furthermore, let (\mathcal{U}, F) be an n-SOGU problem then, $\operatorname{mul}_{l}\left(F, \overline{h_{n}}, \mathcal{U}\right)=\sum_{u \stackrel{?}{F}_{F v \in \mathcal{U}}} \operatorname{mul}\left(F, \overline{h_{n}}, u\right)$ and $\operatorname{mul}_{r}\left(F, \overline{h_{n}}, \mathcal{U}\right)=\sum_{u \stackrel{?}{=}_{F v} \in \mathcal{U}} \operatorname{mul}\left(F, \overline{h_{n}}, v\right)$.

The n-multiplier captures the following property of a term: let t be a n-SOG term such that $\mathcal{V}_{f}(t) \subseteq\{F\}, f \in \Sigma$, and $\sigma=\left\{F \mapsto \lambda \overline{x_{n}} . s\right\}$ a substitution where occ $(f, s) \geq 0, \mathcal{V}_{i}(s) \subseteq\left\{\overline{x_{n}}\right\}$, and for all $1 \leq i \leq n, \operatorname{occ}\left(x_{i}, s\right)=h_{i}$. Then $\operatorname{occ}_{\Sigma}(f, t \sigma) \geq o c c_{\Sigma}(f, s) \cdot \operatorname{mul}\left(F, \overline{h_{n}}, t\right)$ where the $\overline{h_{n}}$ capture the duplication of the arguments to F. The following presents this idea using a concrete example.

Example 3.1. Consider the term $t=g(F(g(a, F(s(a)))), g(F(a), F(F(F(b)))))$. Then the n multiplier of t is $\operatorname{mul}(F, h, t)=\operatorname{mul}(F, h, F(g(a, F(s(a)))))+\operatorname{mul}(F, h, g(F(a), F(F(F(b)))))=$ $(1+h)+(1+(1+h \cdot(1+h)))=3+2 \cdot h+h^{2}$. Thus, when $h=2$ we get $\operatorname{mul}(F, h, t)=11$. Observe $\operatorname{occ}_{\Sigma}\left(g^{\prime}, t\left\{F \mapsto \lambda x \cdot g^{\prime}(x, x)\right\}\right)=11$.

Next, we introduce the n-counter function. Informally, given an n-SOG term t such that $\mathcal{V}_{f}(t) \subseteq\{F\}$, a symbol $c \in \Sigma^{\leq 1}$, and a substitution σ with $\operatorname{dom}_{f}(\sigma)=\{F\}$, the n-counter captures number of occurrences of c in $t \sigma$.
Definition 3.2 (n-Counter). Let $c \in \Sigma^{\leq 1}$, t be a n-SOG term such that $\mathcal{V}_{f}(t)=\{F\}$ and $F \in \mathcal{V}_{f}^{n}$, and $h_{1}, \cdots, h_{n} \geq 0$. Then we define $\operatorname{cnt}\left(F, \overline{h_{n}}, c, t\right)$ recursively as follows:

- if $t=b, \operatorname{arity}(b)=0$, and $b \neq c$, then $\operatorname{cnt}\left(F, \overline{h_{n}}, c, t\right)=0$.
- if $t=f\left(\overline{t_{l}}\right)$ and $f \neq c$, then $\operatorname{cnt}\left(F, \overline{h_{n}}, c, t\right)=\sum_{j=1}^{l} \operatorname{cnt}\left(F, \overline{h_{n}}, c, t_{j}\right)$.
- if $t=c(t)$, then $\operatorname{cnt}\left(F, \overline{h_{n}}, c, c(t)\right)=1+\operatorname{cnt}\left(F, \overline{h_{n}}, c, t\right)$
- if $t=F\left(\overline{t_{n}}\right)$, then $\operatorname{cnt}\left(F, \overline{h_{n}}, c, t\right)=\sum_{i=1}^{n} h_{i} \cdot \operatorname{cnt}\left(F, \overline{h_{n}}, c, t_{i}\right)$

Furthermore, let (\mathcal{U}, F) be a n-SOGU problem them, $\operatorname{cnt}_{l}\left(F, \overline{h_{n}}, c, \mathcal{U}\right)=\sum_{u{ }^{?}{ }_{F} v \in \mathcal{U}} c n t\left(F, \overline{h_{n}}, c, u\right)$ and $\operatorname{cnt}_{r}\left(F, \overline{h_{n}}, c, \mathcal{U}\right)=\sum_{u \stackrel{?}{F}_{F v \in \mathcal{U}}} \operatorname{cnt}\left(F, \overline{h_{n}}, c, v\right)$.

The n-counter captures how many occurrences of a given constant or monadic function symbol will occur in a term $t \sigma$ where $\mathcal{V}_{f}(t)=\{F\}, \sigma=\left\{F \mapsto \lambda \overline{x_{n}} \cdot s\right\}, \mathcal{V}_{i}(s) \subseteq\left\{\overline{x_{n}}\right\}$, and for all $1 \leq i \leq n$, occ $\left(x_{i}, s\right)=h_{i}$ A concrete instance is presented in Example 3.2.

Example 3.2. Consider the term $t=g(g(a, a), g(F(g(a, F(g(a, a)))), g(F(a), F(F(F(b)))))$. The counter of t is $\operatorname{cnt}(F, h, a, t)=\operatorname{cnt}(F, h, a, g(a, a))+\operatorname{cnt}(F, h, a, F(g(a, F(g(a, a)))))+$ $\operatorname{cnt}(F, h, a, g(F(a), F(F(F(b)))))=2+\left(h+2 \cdot h^{2}\right)+h=2+2 \cdot h+2 \cdot h^{2}$. Thus, when $h=2$ we get $\operatorname{cnt}(F, h, a, t)=14$. Observe $\operatorname{occ}_{\Sigma}(a, t\{F \mapsto \lambda x . g(x, x)\})=14$.

The n-multiplier and n-counter functions differ in the following key aspects: the n-multiplier counts occurrences of a symbol occurring once in a given substitution with bound variable occurrences corresponding to $\overline{h_{n}}$, and the n-counter counts occurrences of a given symbol after applying the given substitution to a term.

Now we describe the relationship between the n-multiplier, n-counter, and the total occurrences of a given symbol.

Lemma 3.2. Let $c \in \Sigma^{\leq 1}$, t be a n-SOG term such that $\mathcal{V}_{f}(t)=\{F\}, h_{1}, \cdots, h_{n} \geq 0$, and $\sigma=\left\{F \mapsto \lambda \overline{x_{n}} . s\right\}$ a substitution such that $\mathcal{V}_{i}(s) \subseteq\left\{\overline{x_{n}}\right\}$ and for all $1 \leq i \leq n \operatorname{occ}\left(x_{i}, s\right)=h_{i}$. Then $\operatorname{occ}(c, t \sigma)=\operatorname{occ}(c, s) \cdot \operatorname{mul}\left(F, \overline{h_{n}}, t\right)+\operatorname{cnt}\left(F, \overline{h_{n}}, c, t\right)$.

This lemma captures an essential property of the n-multiplier and n-counter. This is again shown in the following example.

Example 3.3. Consider the term $t=g(g(a, a), g(F(g(a, F(g(a, a)))), g(F(a), F(F(F(b)))))$ and substitution $\{F \mapsto \lambda x \cdot g(a, g(x, x))\}$. The n-counter of t at 2 is $\operatorname{cnt}(F, 2, a, t)=14$ and the n-multiplier of t at 2 is $\operatorname{mul}(F, 2, t)=11$. Observe $\operatorname{occ}_{\Sigma}(a, t\{F \mapsto \lambda x . g(a, g(x, x))\})=25$ and $\operatorname{occ}(a, s) \cdot \operatorname{mul}(F, 2, t)+\operatorname{cnt}(F, 2, a, t)=25$.

Up until now we considered arbitrary terms and substitutions. We now apply these results to unification problems and their solutions. In particular, a corollary of Lemma 3.2 is that there is a direct relation between the n-multiplier and n-counter of a unifiable unification problem given a unifier of the problem. The following lemma describes this relation.

Lemma 3.3 (Unification Condition). Let (\mathcal{U}, F) be a unifiable n-SOGU problem such that $\mathcal{V}_{f}(\mathcal{U})=\{F\}, h_{1}, \cdots, h_{n} \geq 0$, and $\sigma=\left\{F \mapsto \lambda \overline{x_{n}} . s\right\}$ a unifier of (\mathcal{U}, F) such that $\mathcal{V}_{i}(s)=\left\{\overline{x_{n}}\right\}$ and for all $1 \leq i \leq n, \operatorname{occ}(x, s)=h_{i}$. Then for all $c \in \Sigma^{\leq 1}$,

$$
\begin{equation*}
o c c(c, s) \cdot\left(\operatorname{mul}_{l}\left(F, \overline{h_{n}}, \mathcal{U}\right)-\operatorname{mul}_{r}\left(F, \overline{h_{n}}, \mathcal{U}\right)\right)=c n t_{r}\left(F, \overline{h_{n}}, c, \mathcal{U}\right)-c n t_{l}\left(F, \overline{h_{n}}, c, \mathcal{U}\right) \tag{1}
\end{equation*}
$$

The unification condition is at the heart of the undecidability proof presented in Section 4. Essentially, Equation 1 relates the left and right side of a unification equation giving a necessary condition for unification. The following example shows an instance of this property.

Example 3.4. Consider the 1-SOGU problem $F(g(a, a)) \stackrel{?}{=}_{F} g(F(a), F(a))$ and the unifier $\sigma=$ $\{F \mapsto \lambda x \cdot g(x, x)\}$. Observe $\operatorname{occ}(a, g(x, x)) \cdot\left(\left(\operatorname{mul}_{l}(F, 2, F(g(a, a)))-\operatorname{mul}_{r}(F, 2, g(F(a), F(a)))\right)=\right.$ $0 \cdot(1-2)=0$ and $c n t_{r}(F, h, a, g(F(a), F(a)))-c n t_{l}(F, h, a, F(g(a, a)))=4-4=0$.

4 Undecidability n-SOGU

We now use the ideas from the previous section to encode Diophantine equations in unification problems. As a result, we are able to transfer undecidability results Diophantine equations to satisfying the following unification condition for n-SOGU: for a given $c \in \Sigma^{\leq 1}$ and n-SOGU problem (\mathcal{U}, F), does there exists $\overline{h_{n}} \geq 0$ such that $c n t_{r}\left(F, \overline{h_{n}}, c, \mathcal{U}\right)=c n t_{l}\left(F, \overline{h_{n}}, c, \mathcal{U}\right)$. This unification condition is a necessary condition for unifiability.

For the remainder of this section, we consider a finite signature Σ such that $\{g, a, b\} \subseteq \Sigma$, $\operatorname{arity}(g)=2$, and $\operatorname{arity}(a)=\operatorname{arity}(b)=0$. By $p\left(\overline{x_{n}}\right)$ we denote a polynomial with integer coefficients over the variables x_{1}, \cdots, x_{n} ranging over the natural numbers and by $\operatorname{mono}\left(p\left(\overline{x_{n}}\right)\right)$ we denote the set of monomials of $p\left(\overline{x_{n}}\right)$. Given a polynomial $p\left(\overline{x_{n}}\right)$ and $1 \leq i \leq n$, if for all $m \in \operatorname{mono}\left(p\left(\overline{x_{n}}\right)\right)$, there exists a monomial m^{\prime} such that $m=x_{i} \cdot m^{\prime}$ then we say $\operatorname{div}\left(p\left(\overline{x_{n}}\right), x_{i}\right)$. Furthermore, $\operatorname{deg}\left(p\left(\bar{x}_{n}\right)\right)=\max \left\{k \mid k \geq 0 \wedge m=x_{i}^{k} \cdot q\left(\overline{x_{n}}\right) \wedge 1 \leq i \leq n \wedge m \in \operatorname{mono}\left(p\left(\overline{x_{n}}\right)\right)\right\}$. Given a polynomial $p\left(\overline{x_{n}}\right)$, a polynomial $p^{\prime}\left(\overline{x_{n}}\right)$ is a sub-polynomial of $p\left(\overline{x_{n}}\right)$ if $\operatorname{mono}\left(p^{\prime}\left(\overline{x_{n}}\right)\right) \subseteq$ $\operatorname{mono}\left(p\left(\overline{x_{n}}\right)\right)$. Using the above definition we define distinct sub-polynomials based on divisibility by one of the input unknowns.

Definition 4.1 (monomial groupings). Let $p\left(\overline{x_{n}}\right)=q\left(\overline{x_{n}}\right)+c$ be a polynomial where $c \in \mathbb{Z}$, $0 \leq j \leq n$, and $S_{j}=\left\{m \mid m \in \operatorname{mono}\left(p\left(\overline{x_{n}}\right)\right) \wedge \forall i\left(1 \leq i<j \Rightarrow \neg \operatorname{div}\left(m, x_{i}\right)\right)\right\}$. Then

- $p\left(\overline{x_{n}}\right)_{0}=c$,
- $p\left(\overline{x_{n}}\right)_{j}=0$ if there does not exists $m \in S_{j}$ such that $\operatorname{div}\left(m, x_{j}\right)$,
- otherwise, $p\left(\overline{x_{n}}\right)_{j}=p^{\prime}\left(\overline{x_{n}}\right)$, where $p^{\prime}\left(\overline{x_{n}}\right)$ is the sub-polynomial of $p\left(\overline{x_{n}}\right)$ such that $\operatorname{mono}\left(p^{\prime}\left(\overline{x_{n}}\right)\right)=\left\{m \mid m \in S_{j} \wedge \operatorname{div}\left(m, x_{j}\right)\right\}$.

Furthermore, let $p\left(\overline{x_{n}}\right)_{j}=x_{j} \cdot p^{\prime}\left(\overline{x_{n}}\right)$. Then $p\left(\overline{x_{n}}\right)_{j} \downarrow=p^{\prime}\left(\overline{x_{n}}\right)$.
We now define a second-order term representation for arbitrary polynomials as follows:
Definition 4.2 (n-Converter). Let $p\left(\overline{x_{n}}\right)$ be a polynomial and $F \in \mathcal{V}_{f}^{n}$. Then we define the positive (negative) second-order term representation of $p\left(\overline{x_{n}}\right)$, as $c v t^{+}\left(F, p\left(\overline{x_{n}}\right)\right)\left(c v t^{-}\left(F, p\left(\overline{x_{n}}\right)\right)\right)$, where $c v t^{+}\left(c v t^{-}\right)$is defined recursively as follows:

- if $p\left(\overline{x_{n}}\right)=p\left(\overline{x_{n}}\right)_{0}=0$, then $c v t^{+}\left(F, p\left(\overline{x_{n}}\right)\right)=c v t^{-}\left(F, p\left(\overline{x_{n}}\right)\right)=b$
- if $p\left(\overline{x_{n}}\right)=p\left(\overline{x_{n}}\right)_{0}=c \geq 1$, then
$-\operatorname{cvt}^{+}\left(F, p\left(\overline{x_{n}}\right)\right)=t$ where $o c c_{\Sigma}(a, t)=\left|p\left(\overline{x_{n}}\right)_{0}\right|+1$ and t is ground.
$-\operatorname{cvt}^{-}\left(F, p\left(\overline{x_{n}}\right)\right)=t$ where $o c c_{\Sigma}(a, t)=1$ and t is ground.
- if $p\left(\overline{x_{n}}\right)=p\left(\overline{x_{n}}\right)_{0}<0$, then
$-\operatorname{cvt}^{-}\left(F, p\left(\overline{x_{n}}\right)\right)=t$ where $\operatorname{occ}_{\Sigma}(a, t)=\left|p\left(\overline{x_{n}}\right)_{0}\right|+1$ and t is ground.
$-\operatorname{cvt}^{+}\left(F, p\left(\overline{x_{n}}\right)\right)=t$ where $o c c_{\Sigma}(a, t)=1$ and t is ground.
- if $p\left(\overline{x_{n}}\right) \neq p\left(\overline{x_{n}}\right)_{0}$ and $p\left(\overline{x_{n}}\right)_{0}=0$, then for all $\star \in\{+,-\}$,

$$
c v t^{\star}\left(F, p\left(\overline{x_{n}}\right)\right)=F\left(c v t^{\star}\left(F, p\left(\overline{x_{n}}\right)_{1} \downarrow\right), \cdots, c v t^{\star}\left(F, p\left(\overline{x_{n}}\right)_{n} \downarrow\right)\right)
$$

- if $p\left(\overline{x_{n}}\right) \neq p\left(\overline{x_{n}}\right)_{0}$ and $p\left(\overline{x_{n}}\right)_{0} \geq 1$, then
$-c v t^{+}\left(F, p\left(\overline{x_{n}}\right)\right)=g\left(t, F\left(c v t^{+}\left(F, p\left(\overline{x_{n}}\right)_{1} \downarrow\right), \cdots, c v t^{+}\left(F, p\left(\overline{x_{n}}\right)_{n} \downarrow\right)\right)\right.$ where $o c c_{\Sigma}(a, t)=$ $p\left(\overline{x_{n}}\right)_{0}$ and t is ground.
$-\operatorname{cvt}^{-}\left(F, p\left(\overline{x_{n}}\right)\right)=F\left(c v t^{-}\left(F, p\left(\overline{x_{n}}\right)_{1} \downarrow\right), \cdots, \operatorname{cvt}^{-}\left(F, p\left(\overline{x_{n}}\right)_{n} \downarrow\right)\right)$
- if $p\left(\overline{x_{n}}\right) \neq p\left(\overline{x_{n}}\right)_{0}$, and $p\left(\overline{x_{n}}\right)_{0}<0$, then
$-\operatorname{cvt}^{-}\left(F, p\left(\overline{x_{n}}\right)\right)=g\left(t, F\left(c v t^{-}\left(F, p\left(\overline{x_{n}}\right)_{1} \downarrow\right), \cdots, \operatorname{cvt}^{-}\left(F, p\left(\overline{x_{n}}\right)_{n} \downarrow\right)\right)\right.$ where $\operatorname{occ}_{\Sigma}(a, t)=$ $p\left(\overline{x_{n}}\right)_{0}$ and t is ground.
$-c v t^{+}\left(F, p\left(\overline{x_{n}}\right)\right)=F\left(c v t^{+}\left(F, p\left(\overline{x_{n}}\right)_{1} \downarrow\right), \cdots, c v t^{+}\left(F, p\left(\overline{x_{n}}\right)_{n} \downarrow\right)\right)$
Intuitively, the n-converter takes a polynomial in n unknowns separates it into $n+1$ variable disjoint subpolynomials. Each of these subpolynomials is assigned to one of the arguments of the second-order variable (except the subpolynomial representing an integer constant) and the n-converter is called recursively on these subpolynomials. The process stops when all the subpolynomials are integers. Example 4.1 illustrates the construction of a term from a polynomial. Example $4.2 \& 4.3$ construct the n-multiplier and n-counter of the resulting term, respectively.

Example 4.1. Consider the polynomial $p(x, y)=3 \cdot x^{3}+x y-2 \cdot y^{2}-2$. The positive and negative terms representing this polynomial are as follows:

$$
\begin{aligned}
& c v t^{+}\left(F, 3 \cdot x^{3}+x y-2 \cdot y^{2}-2\right)=F(F(F(g(g(a, a), g(a, a)), b), g(a, a)), F(b, a)) \\
& c v t^{-}\left(F, 3 \cdot x^{3}+x y-2 \cdot y^{2}-2\right)=g(g(a, a), F(F(F(a, b), a), F(b, g(a, g(a, a))))
\end{aligned}
$$

Observe that the n-converter will always produce a flex-rigid unification equation as long as the input polynomial is of the form $p\left(\overline{x_{n}}\right)=p^{\prime}\left(\overline{x_{n}}\right)+c$ where $c \in \mathbb{Z}$. When $c=0$, we get a flex-flex unification equation and there is always a solution.
Example 4.2. Consider the term from Example 4.1. The n-multiplier is as follows:
Thus, $\operatorname{mul}\left(F, x, y, \operatorname{cvt}^{+}\left(F, 3 \cdot x^{3}+x y-2 \cdot y^{2}-2\right)\right)=\operatorname{mul}\left(F, x, y, \operatorname{cvt}^{-}\left(F, 3 \cdot x^{3}+x y-2 \cdot y^{2}-2\right)\right)=$ $1+x^{2}+y$.
Example 4.3. Consider the term from Example 4.1. The n-counter is as follows:

$$
\begin{aligned}
\operatorname{cnt}\left(F, x, y, a, c v t^{+}\left(F, 3 \cdot x^{3}+x y-2 \cdot y^{2}-2\right)\right) & =4 \cdot x^{3}+2 \cdot x y+y^{2} \\
\operatorname{cnt}\left(F, x, y, a, c v t^{-}\left(F, 3 \cdot x^{3}+x y-2 \cdot y^{2}-2\right)\right) & =x^{3}+x y+3 \cdot y^{2}+2 \\
\operatorname{cnt}\left(F, x, y, a, c v t^{+}(F, p(x, y))\right)-\operatorname{cnt}\left(F, x, y, a, c v t^{-}(F, p(x, y))\right) & =3 x^{3}+x y-2 \cdot y^{2}-2
\end{aligned}
$$

Using the operator defined in Definition 4.2, we can transform a polynomial with integer coefficients into a n-SOGU problem. The next definition describes the process:
Definition 4.3. Let $p\left(\overline{x_{n}}\right)$ be a polynomial and $F \in \mathcal{V}_{f}^{n}$. Then (\mathcal{U}, F) is the n-SOGU problem induced by $p\left(\overline{x_{n}}\right)$ where $\mathcal{U}=\left\{c v t^{-}\left(F, p\left(\overline{x_{n}}\right)\right) \stackrel{?}{=} F c v t^{+}\left(F, p\left(\overline{x_{n}}\right)\right)\right\}$.

The result of this translation is that the n-counter captures the structure of the polynomial and the n-multipliers cancel out.
Lemma 4.1. Let $n \geq 1, p\left(\overline{x_{n}}\right)$ be a polynomial, and (\mathcal{U}, F) an n-SOGU problem induced by $p\left(\overline{x_{n}}\right)$ where $\mathcal{U}=\left\{c v t^{-}\left(F, p\left(\overline{x_{n}}\right)\right) \stackrel{?}{=}{ }_{F} c v t^{+}\left(F, p\left(\overline{x_{n}}\right)\right)\right\}$. Then

$$
p\left(\overline{x_{n}}\right)=c n t_{r}\left(F, \overline{x_{n}}, a, \mathcal{U}\right)-c n t_{l}\left(F, \overline{x_{n}}, a, \mathcal{U}\right) \quad \text { and } \quad 0=\operatorname{mul}_{l}\left(F, \overline{x_{n}}, \mathcal{U}\right)-\operatorname{mul}_{r}\left(F, \overline{x_{n}}, \mathcal{U}\right) .
$$

A simply corollary of Lemma 4.1 concerns commutativity of unification equations:
Corollary 4.1. Let $n \geq 1, p\left(\overline{x_{n}}\right)$ be a polynomial, and ($\{s \stackrel{?}{=} t\}, F$) an n-SOGU problem induced by $p\left(\overline{x_{n}}\right)$. Then $-p\left(\overline{x_{n}}\right)=c n t_{r}\left(F, \overline{x_{n}}, a,\{t \stackrel{?}{=} s\}\right)-c n t_{l}\left(F, \overline{x_{n}}, a,\{t \stackrel{?}{=} s\}\right)$.

Both $p\left(\overline{x_{n}}\right)$ and $-p\left(\overline{x_{n}}\right)$ have the same roots and the induced unification problem cannot be further reduced without substituting into F, thus the induced unification problem uniquely captures the polynomial $p\left(\overline{x_{n}}\right)$. We now prove that the unification condition as introduced in Lemma 3.3 is equivalent to finding the solutions to polynomial equations. The following shows how a solution to a polynomial can be obtained from the unification condition and vice versa.

Lemma 4.2. Let $p\left(\overline{x_{n}}\right)$ be a polynomial and (\mathcal{U}, F) the n-SOGU problem induced by $p\left(\overline{x_{n}}\right)$ using the $c \in \Sigma^{\leq 1}$ (Definition 4.2). Then there exists $h_{1}, \cdots, h_{n} \geq 0$ such that $\operatorname{cnt}_{l}\left(F, \overline{h_{n}}, c, \mathcal{U}\right)=$ $\operatorname{cnt}_{r}\left(F, \overline{h_{n}}, c, \mathcal{U}\right)$ (unification condition) if and only if $\left\{x_{i} \mapsto h_{i} \mid 1 \leq i \leq n \wedge h_{i} \in \mathbb{N}\right\}$ is a solution to $p\left(\overline{x_{n}}\right)=0$.

Using Lemma 4.2, we now show that finding $h_{1}, \cdots, h_{n} \geq 0$ such that the unification condition holds is undecidable by reducing solving $p\left(\overline{x_{n}}\right)=0$ for arbitrary polynomials over \mathbb{N} (Theorem 2.1) to finding $h_{1}, \cdots, h_{n} \geq 0$ which satisfy the unification condition.
Lemma 4.3 (Equalizer Problem). For a given n-SOGU problem, finding $h_{1}, \cdots, h_{n} \geq 0$ such that the unification condition (Lemma 3.3) holds is undecidable.
Theorem 4.1. There exists $n \geq 1$ such that n-SOGU is undecidable.
We prove Theorem 4.1 by assuming n-SOGU is decidable and using this assumption to show that the Equalizer Problem must be decidable, thus resulting in a contradiction.

In particular, we answer the question posed in Section 1 by proving that first-order variables occurrence does not impact the decidability of second-order unification.

References

[1] Jordi Levy. On the limits of second-order unification. In Temur Kutsia and Christophe Ringeissen, editors, Proceedings of the 28th International Workshop on Unification, UNIF 2014, Vienna, Austria, July 13, 2014, pages 5-14, 2014.
[2] Jordi Levy and Margus Veanes. On the undecidability of second-order unification. Inf. Comput., 159(1-2):125-150, 2000.
[3] Yuri V. Matiyasevich. Hilbert's tenth problem. MIT Press, Cambridge, MA, USA, 1993.

[^0]: *Funded by Czech Science Foundation Grant No. 22-06414L and Cost Action CA20111 EuroProofNet and the Austrian Science Fund (FWF) project AUTOSARD (36623).
 ${ }^{1}$ Full Results and proofs in Arxiv paper arxiv.org/abs/2404.10616.

