One is all you need: Second-order Unification without
First-order Variables *

David M. Cerna! and Julian Parsert??
! Czech Academy of Sciences, Prague, Czechia
dcerna@cs.cas.cz
2 University of Oxford, United Kingdom
3 University of Innsbruck, Austria
julian.parsert@gmail.com

Abstract

We consider the fragment of Second-Order unification with the following properties:
(i) only one second-order variable allowed, (ii) first-order variables do not occur. We show
that Hilbert’s 10*" problem is reducible to this fragment if the signature contains a binary
function symbol and two constants. This generalizes known undecidability results.

1 Introduction

In the 2014 addition of the unification workshop Levy [1] provided a comprehensive survey of
decidability and undecidability results for second-order unification. While second-order unifi-
cation without first-order variables was considered [2], 2 second-order variables were required
to show undecidability. Furthermore, investigations proving undecidability of second-order uni-
fication with 1 second-order variable required first-order variables [2]. We generalize these
result by showing one second-order variable is enough undecidability (no first-order variables).
Proofs of all significant lemmas and theorems may be found in the arziv version of the pa-
per arxiv.org/abs/2404.10616.

2 Preliminaries

We consider a finite signature ¥ = {f1,-+, fu,c1, -+ ,em} where n,m > 1, for 1 < i < n,
the arity of f; is denoted arity(f;) > 1, and for all 1 < j < m, the arity of ¢; is denoted
arity(c;) = 0 (constants). Furthermore, let <! C ¥ be the set of base symbols defined as
Yl ={c|ece X Aarity(c) < 1}.

By V we denote a countably infinite set of variables. Furthermore, let V;,Vy C V such that
Vi NV = 0. We refer to members of V; as individual variables, denoted by z,y,z, --- and
members of V¢ as function variables, denoted by F,G,H, ---. Members of V; have an arity > 1
which we denote by arity(F) where F' € Vy. By V}, where n > 1, we denote the set of all
function variables with arity n. We will use h to denote a symbol in YV UX when doing so would
not cause confusion.

We refer to members of the term algebra T(X,V), as terms. By V;(t) and Vy(t) (V§(t)
for n > 1) we denote the set of individual variables and function variables (with arity = n)
occurring in ¢, respectively. We refer to a term ¢ as n-second-order ground (n-SOG) if V;(t) = 0,

*Funded by Czech Science Foundation Grant No. 22-06414L and Cost Action CA20111 EuroProofNet and
the Austrian Science Fund (FWF) project AUTOSARD (36623).
1Full Results and proofs in Arxiv paper arxiv.org/abs/2404.10616.

https://arxiv.org/abs/2404.10616
https://arxiv.org/abs/2404.10616

One is all you need D.M. Cerna and J. Parsert

Vi(t) # 0 with Vi (t) C V§, first-order if V¢ (¢) = 0, and ground if t is first-order and V;(t) = 0.
The sets of n-SOG, first-order, and ground terms are denoted 7§y, Tro, and Tg, respectively.
When possible, without causing confusion, we will abbreviate a sequence of terms ¢1,--- , ¢, by
t, where n > 0.

The set of positions of a term ¢, denoted by pos(t), is a set of strings of positive integers,
defined as pos(h(t1,...,t,)) = {e} UU_,{i.p | p € pos(t;)}, t1,...,t, are terms, and e denotes
the empty string. For example, the term at position 1.1.2 of g(f(z,a)) is a. Given a term ¢ and
p € pos(t), then t|, denotes the subterm of ¢ at position p. Given a term ¢ and p,q € pos(t),
we write p C ¢ if ¢ = p.¢' and p = q if p C g and p # ¢q. The set of subterms of a term t is
defined as sub(t) = {t|, | p € pos(t)}. The head of a term t is defined as head(h(t1,...,t,)) = h,
for n > 0. The number of occurrences of a term s in a term ¢ is defined as occ(s,t) = |{p |
s = t|, Ap € pos(t)}|. The number of occurrences of a symbol h in a term ¢ is defined as
oces(h,t) = |{p | h = head(t|,) A p € pos(t)}].

A n-second-order ground (n-SOG) unification equation has the form u = v where u and
v are n-SOG terms and F' € V} such that Vy(u) = {F'} and V¢(v) = {F}. A n-second-order
ground unification problem (n-SOGU problem) is a pair (U, F) where U is a set of n-SOG
unification equations and F' € Vi such that for all u =¢ v € U, G = F. Recall from the
definition of n-SOG that V;(u) = Vi(v) = 0.

A substitution is set of bindings of the form {Fy — Ayj .t1, - Fi — Ay, .tg,x1 +—
81,7 y Ty > Sy} where kyw > 0, for all 1 < i <k, t; is first-order and V;(t;) € {y1,- - ,u1, },
arity(F;) = 1;, and for all 1 < i < w, s; is ground. Given a substitution o, domy(c) = {F | F
ATpt € o NF € Vi) and domi(o) = {z |zt € XAz € V;}. We refer to a substitution o
as second-order when dom;(c) = () and first-order when dom (o) = (). We use postfix notation
for substitution applications, writing to instead of o(t). Substitutions are denoted by lowercase
Greek letters. As usual, the application to affects only the free variable occurrences of ¢ whose
free variable is found in dom;(c) and domy(co). A substitution o is a unifier of an n-SOGU
problem (U, F), if dom (o) = {F}, dom;(c) = 0, and for all u = v € U, uo =45 vo.

We will use the following theorem due to Matiyasevich, Robinson, Davis, and Putnam, in
later sections.

Theorem 2.1 (Hilberts 10** problem or Matiyasevich-Robinson-Davis-Putnam theorem [3]).
Given a polynomial p(Z) with integer coefficients, finding integer solutions to p(Z) = 0 is
undecidable.

3 n-Multipliers and n-Counters

In this section, we define and discuss the n-multiplier and n-counter functions, which allow us to
encode number-theoretic problems in second-order unification. These functions are motivated
by the following simple observation about n-SOGU.

Lemma 3.1. Let (U, F) be a unifiable n-SOGU problem, and ¢ a unifier of (U4, F'). Then for
all c € B! and u =p v € U, oces(c,uo) = oces (¢, va).

Definition 3.1 (n-Mutiplier). Let ¢ be a n-SOG term such that V¢(t) C {F'} and F' € V}} and
hi, ,hy > 0. Then we define mul(F, hy,,t) recursively as follows:

e if t = b and arity(b) = 0, then mul(F, h,,t) = 0.

o if t = f(ty, - 1), then mul(F, by, t) = S5 mul(F, by, t))

One is all you need D.M. Cerna and J. Parsert

o if t = F(L,), then mul(F, hy,t) =1+ > ", hy - mul(F, hy,t;)
Furthermore, let (U, F') be an n-SOGU problem then, mul;(F, h,,,U) = Zu?

mul(F, by, u)
o o =rFveU
and mul,.(F, hy,,U) =" u mul(F, Iy, v).
U=FV

The n-multiplier captures the following property of a term: let ¢ be a n-SOG term such that
Vi(t) C{F}, f €3, and 0 = {F — AT,.s} a substitution where ocex(f,s) >0, V;(s) C {z},
and for all 1 < i < n, occ(z;,s) = h;. Then occs(f,to) > occs(f,s) - mul(F, hy,,t) where the
h,, capture the duplication of the arguments to F. The following presents this idea using a
concrete example.

Example 3.1. Consider the term t = g(F(g(a, F(s(a)))), g(F(a), F(F(F(b))))). Then the n-
multiplier of ¢ is mul(F, h,t) = mul(F, h, F(g(a, F(s(a))))) + mul(F, h,g(F(a), F(F(F(b))))) =
(1+h)+(1+1+h-(1+h))=3+2-h+h? Thus, when h = 2 we get mul(F,h,t) = 11.
Observe oces (¢, t{F — Az.¢'(x,x)}) = 11.

Next, we introduce the n-counter function. Informally, given an n-SOG term t such that
Vi(t) C {F}, a symbol ¢ € =1 and a substitution ¢ with doms(c) = {F}, the n-counter
captures number of occurrences of ¢ in to.

Definition 3.2 (n-Counter). Let ¢ € ¥=', t be a n-SOG term such that Vy(t) = {F} and
FeVvy, and Ay, ,hy, > 0. Then we define cnt(F, h,,c,t) recursively as follows:

o ift = b, arity(b) = 0, and b # c , then cnt(F, hy,c,t) = 0.

o if t = f({;) and f # c, then cnt(F, hy,c,t) = 22:1 ent(F, by, c,t)).
o if t = c(t), then cnt(F,h,,c,c(t)) =1+ cnt(F, h,,c,t)

e if t = F(t,), then cnt(F, hy,c,t) = >0 by - ent(F, by, ¢, t;)

Furthermore, let (U, F') be a n-SOGU problem them, cnt;(F, hy,,c,U) =Y u ent(F, by, c,u)

- - U=FV
and cnt,(F, hy,c,U) =>" cu ent(F, by, c,v).
U=pv

The n-counter captures how many occurrences of a given constant or monadic function
symbol will occur in a term to where V¢(t) = {F}, 0 = {F — A\Z,.s}, Vi(s) C {Z,}, and for
all 1 < i <mn, occ(x;,s) = h; A concrete instance is presented in Example 3.2.

Example 3.2. Consider the term t = g¢(g(a,a), g(F(9(a, F(g(a,a)))),g(F(a), F(F(F(b))))).
The counter of ¢ is cnt(F,h,a,t) = cnt(F,h,a,9(a,a)) + cnt(F, h,a, F(g(a, F(g(a,a))))) +
ent(F,hya,g(F(a), F(F(F®))))) =2+ (h+2-h*) +h =2+2-h+2-h% Thus, when
h =2 we get ent(F, h,a,t) = 14. Observe occx(a, t{F — Az.g(x,x)}) = 14.

The n-multiplier and n-counter functions differ in the following key aspects: the n-multiplier
counts occurrences of a symbol occurring once in a given substitution with bound variable
occurrences corresponding to h,, and the n-counter counts occurrences of a given symbol after
applying the given substitution to a term.

Now we describe the relationship between the n-multiplier, n-counter, and the total occur-
rences of a given symbol.

Lemma 3.2. Let ¢ € %=1, ¢ be a n-SOG term such that V;(t) = {F}, hy, - ,h, > 0, and

o = {F + \T,.s} a substitution such that V;(s) C {Z,} and for all 1 <4 <n occ(w;,s) = h;.
Then occ(c, to) = occ(e, s) - mul(F, by, t) + cnt(F, hy,, ¢, t).

One is all you need D.M. Cerna and J. Parsert

This lemma captures an essential property of the n-multiplier and n-counter. This is again
shown in the following example.

Example 3.3. Consider the term ¢t = g(g(a,a),g(F(g(a, F(g9(a,a)))),g(F(a), F(F(F(b)))))
and substitution {F +— A\z.g(a, g(x,2))}. The n-counter of ¢ at 2 is ¢nt(F,2,a,t) = 14 and the
n-multiplier of ¢ at 2 is mul(F,2,t) = 11. Observe occx(a, t{F — Azr.g(a,g(z,z))}) = 25 and
occ(a, s) - mul(F,2,t) + cnt(F,2,a,t) = 25.

Up until now we considered arbitrary terms and substitutions. We now apply these results
to unification problems and their solutions. In particular, a corollary of Lemma 3.2 is that there
is a direct relation between the n-multiplier and n-counter of a unifiable unification problem
given a unifier of the problem. The following lemma describes this relation.

Lemma 3.3 (Unification Condition). Let (U, F') be a unifiable n-SOGU problem such that
Vi) ={F}, h1, -+ ,hy, >0, and 0 = {F — AT,,.s} a unifier of (U, F') such that V;(s) = {Z,,}
and for all 1 <1 < n, occ(x,s) = h;. Then for all ¢ € £=1,

occ(c, 8) - (mul(F, by, U) — mul,.(F, hp,U)) = cnt,(F, hy, c,U) — enty(F by, e,). (1)

The unification condition is at the heart of the undecidability proof presented in Section 4.
Essentially, Equation 1 relates the left and right side of a unification equation giving a necessary
condition for unification. The following example shows an instance of this property.

Example 3.4. Consider the 1-SOGU problem F(g(a,a)) =¢ g(F(a), F(a)) and the unifier o =
{F — Az.g(x,x)}. Observe occ(a, g(x,x))-((mul;(F,2 F((a)))—mul,(F,2,9(F(a), F(a)))) =
0-(1—-2)=0and cntr(F,h,a,g(F(a),F(a)))fcmfl(F(g(a,a))) :4 4=0.

4 Undecidability n-SOGU

We now use the ideas from the previous section to encode Diophantine equations in unification
problems. As a result, we are able to transfer undecidability results Diophantine equations to
satisfying the following unification condition for n-SOGU: for a given ¢ € ¥=! and n-SOGU
problem (U, F), does there exists h, > 0 such that cnt,(F, h,,c,U) = ent)(F, hy,,c,U). This
unification condition is a necessary condition for unifiability.

For the remainder of this section, we consider a finite signature ¥ such that {g,a,b} C 3,
arity(g) = 2, and arity(a) = arity(b) = 0. By p(Z,,) we denote a polynomial with integer
coefficients over the variables x1, - - - , z,, ranging over the natural numbers and by mono(p(Z,,))
we denote the set of monomials of p(Z,). Given a polynomial p(Z,) and 1 < i < n, if for all
m € mono(p(T,)), there exists a monomial m’ such that m = z;-m’ then we say div(p(Z,), z;).
Furthermore, deg(p(Z,)) = max{k | k > 0Am = 2¥ . q(@,) A1 <i < nAm € mono(p(T,))}
Given a polynomial p(T,), a polynomial p' (%) is a sub-polynomial of p(%;,) if mono(p'(Z)) C
mono(p(T,)). Using the above definition we define distinct sub-polynomials based on divisibility
by one of the input unknowns.

)

q(Ty) + ¢ be a polynomial where ¢ € Z,

Definition 4.1 (monomial groupings). Let p(Z;) =
<i<j= —div(im,z;))}. Then

0<j<n,and S; ={m | m & mono(p(Zy)) A Vi(l

o p(ﬂ)o =,

o p(T,); = 0 if there does not exists m € S; such that div(m,z;),

One is all you need D.M. Cerna and J. Parsert

o otherwise, p(Z,); = p'(Tn), where p'(T;) is the sub-polynomial of p(Z;) such that
mono(p' (Ty)) = {m | m € S; A div(m,z;)}.
Furthermore, let p(Z); = z; - p'(Tn). Then p(Ty); 1= p'(T2).
We now define a second-order term representation for arbitrary polynomials as follows:

Definition 4.2 (n-Converter). Let p(z;,) be a polynomial and I € V§. Then we define the pos-
itive (negative) second-order term representation of p(z,), as cvt™ (F,p(Zy))(cvt™ (F, p(Ty))),
where cvtt (cvt™) is defined recursively as follows:

o if p(Tn) = p(Fn)o = 0, then cot™(F,p(T7)) = cvt™ (F,p(Tn)) = b
o if p(T,) = p(Tn)o = ¢ > 1, then
— cot™(F,p(T;)) =t where occs(a,t) = |p(Tn)o| + 1 and ¢ is ground.
— cut~ (F,p(T5)) =t where occs(a,t) =1 and ¢t is ground.
o if p(7,,) = p(Tn)o < 0, then
— cvt™ (F,p(Ty)) =t where ocex(a,t) = |p(Tn)o| + 1 and ¢ is ground.
— cot™(F,p(T,)) =t where occs(a,t) = 1 and ¢ is ground.
o if p(7;,) # p(Tn)oand p(Ty,)o = 0, then for all x € {+, —},
cvt*(F, p(Z)) = F(evt*(F,p(Tp)1 1), -+, cot* (Fyp(Tn)n 4))

o if p(Ty,) # p(Tn)oand p(Ty)o > 1, then

— et (F,p(@n)) = g(t, Fcot™ (F,p@)1 L), -+, cot™ (F,p(T)n 1)) where occs(a,t) =
p(Zn)o and ¢ is ground.

- C’Ut_(F,p(ﬁ)) = F(C’Ut_(Fap(ﬁ)l \I/)a e ,C’Ut_(F,p(ﬁ)n \L))
o if p(T,,) # p(Tn)o, and p(Tr)o < 0, then

— cvt™ (F,p(Ty)) = gt, F(evt™ (F,p(Tn)1 1), -+, cvt™ (F, p(T)n 1)) where oces(a,t) =
p(Zn)o and ¢ is ground.

— cot™(F,p(Tn)) = F(evt* (F,p@n)1 1), -+, cot ¥ (F,p(Tn)n 1)

Intuitively, the n-converter takes a polynomial in n unknowns separates it into n+ 1 variable
disjoint subpolynomials. Each of these subpolynomials is assigned to one of the arguments of
the second-order variable (except the subpolynomial representing an integer constant) and
the n-converter is called recursively on these subpolynomials. The process stops when all
the subpolynomials are integers. Example 4.1 illustrates the construction of a term from a
polynomial. Example 4.2 & 4.3 construct the n-multiplier and n-counter of the resulting term,
respectively.

Example 4.1. Consider the polynomial p(x,y) = 3 - 2% + xy — 2 - 4> — 2. The positive and
negative terms representing this polynomial are as follows:

cvt+(F73 a4 xy—2- y2 - 2) :F(F(F(g(g(a,a),g(a,a)),b),g(a7a))7F(b,a))
cot ™ (F,3-a® +ay —2-y* = 2) =g(g(a, a), F(F(F(a,b),a), F(b,g(a, g(a,a))))

One is all you need D.M. Cerna and J. Parsert

Observe that the n-converter will always produce a flex-rigid unification equation as long
as the input polynomial is of the form p(T,,) = p/(T,,) + ¢ where ¢ € Z. When ¢ = 0, we get a
flex-flex unification equation and there is always a solution.

Example 4.2. Consider the term from Example 4.1. The n-multiplier is as follows:
Thus, mul(F,z,y, cvt™(F,3- 23 +ay—2-y?> —2)) = mul(F, x,y, cot—(F,3- 23 +xy—2-y>—2)) =
1422 +9.

Example 4.3. Consider the term from Example 4.1. The n-counter is as follows:
ent(F,x,y,a, cot™(F,3 -2 + oy —2-9% —2)) =4 - 23 + 2 2y + 32
ent(Fyx,y,a, cot™ (F,3 -2 + oy —2-9y* —2)) =2 +ay +3-y* +2

ent(F,x,y, a, cut ™ (F, p(z,y))) — ent(F, z,y, a, cvt ™~ (F,p(z,y))) =32> + 2y — 2 - 9> — 2
Using the operator defined in Definition 4.2, we can transform a polynomial with integer
coefficients into a n-SOGU problem. The next definition describes the process:

Definition 4.3. Let p(Z;;) be a polynomial and F' € V. Then (U, F') is the n-SOGU problem

induced by p(Z;) where U = {cvt— (F,p(Ty)) =F cot™ (F, p(T5))}

The result of this translation is that the n-counter captures the structure of the polynomial
and the n-multipliers cancel out.

Lemma 4.1. Let n > 1, p(Z,) be a polynomial, and (U, F') an n-SOGU problem induced by
p(Ty) where U = {cvt—(F,p(Ty;)) =F cott (F,p(Z5))}. Then

p(Tr) = entr(F, Ty, a,U) — enty(F, Ty, a,U) and 0= mul;(F,Z,,U) — mul,.(F,Z,,U).
A simply corollary of Lemma 4.1 concerns commutativity of unification equations:

Corollary 4.1. Let n > 1, p(Z;) be a polynomial, and ({s = t}, F) an n-SOGU problem
induced by p(Z). Then —p(T) = cnt,.(F, Ty, a, {t = s}) — enty(F, T, a, {t = s}).

Both p(Z;) and —p(Z,) have the same roots and the induced unification problem cannot
be further reduced without substituting into F', thus the induced unification problem uniquely
captures the polynomial p(Z;). We now prove that the unification condition as introduced in
Lemma 3.3 is equivalent to finding the solutions to polynomial equations. The following shows
how a solution to a polynomial can be obtained from the unification condition and vice versa.

Lemma 4.2. Let p(7,,) be a polynomial and (U, F') the n-SOGU problem induced by p(Fy)
using the c € Y <!(Definition 4.2). Then there exists hy, - - , h, > 0 such that cnt;(F, h,,c,U) =
enty (F, by, c,U) (unification condition) if and only if {z; — h; | 1 <1i < nAh; € N} is a solution
to p(Z,) = 0.

Using Lemma 4.2, we now show that finding hq,--- ,h, > 0 such that the unification
condition holds is undecidable by reducing solving p(Z;,) = 0 for arbitrary polynomials over N
(Theorem 2.1) to finding hy,--- , h, > 0 which satisfy the unification condition.

Lemma 4.3 (Equalizer Problem). For a given n-SOGU problem, finding hy, -, h, > 0 such
that the unification condition (Lemma 3.3) holds is undecidable.

Theorem 4.1. There exists n > 1 such that n-SOGU is undecidable.

We prove Theorem 4.1 by assuming n-SOGU is decidable and using this assumption to show
that the Equalizer Problem must be decidable, thus resulting in a contradiction.

In particular, we answer the question posed in Section 1 by proving that first-order variables
occurrence does not impact the decidability of second-order unification.

6

One is all you need D.M. Cerna and J. Parsert

References

[1] Jordi Levy. On the limits of second-order unification. In Temur Kutsia and Christophe Ringeis-
sen, editors, Proceedings of the 28th International Workshop on Unification, UNIF 2014, Vienna,
Austria, July 13, 2014, pages 5-14, 2014.

[2] Jordi Levy and Margus Veanes. On the undecidability of second-order unification. Inf. Comput.,
159(1-2):125-150, 2000.
[3] Yuri V. Matiyasevich. Hilbert’s tenth problem. MIT Press, Cambridge, MA, USA, 1993.

	1 Introduction
	2 Preliminaries
	3 n-Multipliers and n-Counters
	4 Undecidability n-SOGU
	References

