
Type Independent Unification of Higher-Order Patterns

Jean-Pierre Jouannaud

Université Paris-Saclay, Laboratoire de Méthodes Formelles, 91190 Gif-sur-Yvette, France.

1 Introduction

Unification is used to show confluence of a set of overlapping rewrite rules. We are interested
here in higher-order rules whose left-hand sides are patterns, as introduced by Miller in the
case of simple types [9], later considered for other typing disciplines [2], and finally adapted
to untyped lambda calculi in [3]. Following up, we study here unification of patterns indepen-
dently of a given typing discipline. To this end, we introduce the notion of typed structure by
axiomatizing sets of typable terms without any syntactic notion of type, as subsets of untyped
terms that satisfy some well crafted closure properties common to most type systems. We then
show that typed structures enjoy most general unifiers for patterns, computable by the usual
algorithm for unifying patterns. This axiomatization is somehow reminiscent of Girard’s ax-
iomatisation of typed structures on which strong normalization proofs of typed lambda calculi
are based. We finally briefly discuss the associative-commutative case.

Typed rewriting structures, their unifiability properties, and their application to checking
higher-order confluence are developed in [5], where the main result described here is proved.

2 Computations on higher-order terms

Given an untyped lambda calculus generated by a vocabulary made of three pairwise disjoint
sets, a signature F of function symbols, a set X of variables, and a set Z of meta-variables, we
are interested in 𝜆F , an untyped calculus whose reduction relation extends the 𝛽-rule of the
underlying lambda calculus by a set of user-defined rewrite rules built over that vocabulary.

2.1 Terms

𝜆F is a mix of the pure lambda calculus and Klop’s combinatory reduction systems [7]. Terms
are those of the lambda calculus enriched with F -headed terms of the form 𝑓 (𝑢) with 𝑓 ∈ F ,
𝑢 denoting a list of terms separated by commas, and meta-terms of the form 𝑍 [𝑣] with 𝑍 ∈ Z.
Only variables can be abstracted over. Elements of the vocabulary have arities, denoted by
vertical bars as in | 𝑓 |. Variables have arity zero, meta-variables have an arbitrary arity. The
set of (open) terms, T𝜆F, is defined by the following grammar rules:

𝑢, 𝑣 := 𝑥 | (𝑢 𝑣) | 𝜆𝑥.𝑣 | 𝑓 (𝑢) | 𝑍 [𝑣]
where 𝑥 ∈ X, 𝑓 ∈ F , |𝑢 | = | 𝑓 |, 𝑍 ∈ Z and |𝑣 | = |𝑍 |

We write 𝑎 for 𝑎(), 𝑋 for 𝑋 [] and 𝑓 (𝑥 𝑦) for 𝑓 ((𝑥 𝑦)). We use the small letters 𝑓 , 𝑔, ℎ, . . .

for function symbols, 𝑥, 𝑦, 𝑧, . . . for variables, and reserve capital letters 𝑋,𝑌, 𝑍, . . . for meta-
variables. When convenient, a small letter like 𝑥 may denote any variable in X∪Z. By function
symbols we sometimes mean those in F , as well as application and abstraction.

We use the notation | | for various quantities besides symbols arities (length of lists, size of
expressions, the cardinality of sets), and [𝑚..𝑛] for the list of natural numbers from 𝑚 to 𝑛.

Unification of Higher-Order Patterns Jean-Pierre Jouannaud, Université Paris-Saclay

Positions in higher-order terms, as in first-order terms, are words over the natural numbers,
using Λ for the empty word, · for concatenation, ≤P for the prefix order (above), ≥P for its
inverse (below), <P and >P for their strict parts, 𝑝#𝑞 for incomparable positions (parallel),
and 𝑝 ≥P 𝑄 (𝑝 ≤P 𝑄, resp.), 𝑄 a set of parallel positions, for ∃𝑞 ∈ 𝑄 : 𝑝 ≥P 𝑞 (𝑝 ≤P 𝑞, resp.).

Given a term 𝑀, we use: 𝑀 (𝑝) for its symbol at position 𝑝; 𝑀 |𝑝 for the subterm of 𝑀

at position 𝑝, a notion which is sometimes convenient and will be given a precise meaning
later; P𝑜𝑠(𝑀), FP𝑜𝑠(𝑀), VP𝑜𝑠(𝑀), MP𝑜𝑠(𝑀) for the following respective sets of positions
of 𝑀: all positions, the positions of function symbols, of free variables, and of meta-variables;
V𝑎𝑟 (𝑀) for its sets of free variables; MV𝑎𝑟 (𝑀), MV𝑎𝑟 𝑙 (𝐿) and MV𝑎𝑟𝑛𝑙 (𝑀) for its sets of
arbitrary, linear and non-linear meta-variables; A term 𝑀 is ground if V𝑎𝑟 (𝑀) =∅, closed if
MV𝑎𝑟 (𝑀)=∅, and linear if MV𝑎𝑟𝑛𝑙 (𝑀) = ∅. We use T for the set of closed terms.

2.2 Substitutions

A substitution is a map from variables and meta-variables to terms which extends to a capture-
avoiding homomorphism on terms [7]. The result 𝑡𝜎 of substituting the term 𝑡 by the sub-
stitution 𝜎 is called an instance of 𝑡. All substitutions considered here will have a finite
domain, hence can be denoted in extension as in {𝑥1 ↦→ 𝑀1, . . . 𝑥𝑛 ↦→ 𝑀𝑛} or {𝑥 ↦→ 𝑀},
where 𝑥 is a list of variables or meta-variables. The substitution 𝜎 is ground (resp., closed)
when so are all 𝑀𝑖’s. The domain of 𝜎 is the set D𝑜𝑚(𝜎) = {𝑥𝑖 : 𝜎(𝑥𝑖) ≠ 𝑥𝑖}𝑖 while
R𝑎𝑛(𝜎) =

⋃
𝑥∈D𝑜𝑚(𝜎) V𝑎𝑟 (𝜎(𝑥)) ∪ MV𝑎𝑟 (𝜎(𝑥)) is its image. A substitution 𝜎 can be re-

stricted to or deprived from (meta-)variables in some set 𝑉 , written 𝜎|𝑉 and 𝜎\𝑉 respectively.
We denote by P𝑜𝑠(𝜎) the sequence {P𝑜𝑠(𝜎(𝑥𝑖))}𝑖 of sets of positions of 𝜎.

2.3 Splitting and sticking

Given a term 𝑢 and a list 𝑃 = {𝑝𝑖}𝑖=𝑛𝑖=1 of parallel positions in 𝑢, we define the term obtained
by splitting 𝑢 along 𝑃 as 𝑢

𝑃
= 𝑢[𝑍1 (𝑥1)] 𝑝1 . . . [𝑍𝑛 (𝑥𝑛)] 𝑝𝑛 (𝑢 is cut below 𝑃) and its associated

substitution by 𝑢𝑃 = {𝑍𝑖 ↦→ 𝜆𝑥𝑖 .𝑢 |𝑝𝑖 }𝑖=𝑛𝑖=1 (𝑢 is cut above 𝑃), where, for all 𝑖 ∈ [1, 𝑛], 𝑥𝑖 is the
list of all variables of 𝑢 |𝑝𝑖 bound in 𝑢 above 𝑝𝑖 and 𝑍𝑖 is a fresh meta-variable of arity |𝑥𝑖 |.
The definition of substitution for meta-variables ensures that 𝑢𝑃𝑢

𝑃
=𝑢. Instantiating 𝑢

𝑝
by 𝑢𝑝

amounts therefore to stick 𝑢 |𝑝 in the hole of the context 𝑢[] 𝑝, an operation that may capture
free variables of 𝑢 |𝑝: splitting gives a meaning for the operation of sticking a term inside another
in terms of the familiar substitution operation. (Sticking is usually called replacement when
no variable is captured.) We denote by 𝑢[]𝑃 a context with holes at a set 𝑃 = {𝑝𝑖} of parallel
positions in 𝑢, and by 𝑢[𝑣]𝑃 the term obtained by sticking each 𝑣𝑖 at position 𝑝𝑖 in 𝑢. The
brackets used in contexts may sometimes collide with those used for meta-variables, requiring
desambiguation by the user.

2.4 Reductions

Two different kinds of reductions coexist in 𝜆F , functional and higher-order reductions, both
operating on closed terms. However, rewriting open terms will sometimes be needed, in which
case rewriting is intended to rewrite all their closed instances at once.

2.5 Functional reductions

Functional reduction is the relation on terms generated by the rule 𝛽𝛼 : (𝜆𝑥.𝑣 𝑤)−→𝑣{𝑥 ↦→ 𝑤}.
The usually omitted 𝛼-index stresses that renaming bound variables, called 𝛼-conversion, is

2

Unification of Higher-Order Patterns Jean-Pierre Jouannaud, Université Paris-Saclay

built-in, that is, rewriting with 𝛽𝛼 is modulo 𝛼-conversion (only those variables bound below
the rewriting position need be renamed).

2.6 Higher-order reductions

Higher-order reductions result from rules whose left-hand sides are higher-order patterns in
Miller’s or Nipkow’s sense [8], although they need not be typed here.

Definition 1 (Untyped pattern). A pre-redex of arity 𝑛 in a term 𝐿 is an unapplied meta-term
𝑍 [𝑥] whose arguments 𝑥 are 𝑛 pairwise distinct variables. A pre-pattern is a ground term all
of whose meta-variables occur in pre-redexes. An untyped pattern, or simply pattern, is a
pre-pattern which is neither a pre-redex nor an abstraction.

Note that erasing types from a Nipkow’s pattern yields a pattern in our sense, since his pre-
redexes being of base type, they cannot be applied. Observe that pre-redexes in pre-patterns
can only occur at parallel positions.

We can now define higher-order rules and rewriting:

Definition 2 (Rule). A (higher-order) rule is a triple 𝑖 :𝐿→𝑅, whose (possibly omitted) index
𝑖 is a name, left-hand side 𝐿 is a pattern, and MV𝑎𝑟 (𝑅) ⊆ MV𝑎𝑟 (𝐿).

The use of capital letters for higher-order rules aims at pointing out that 𝐿, 𝑅 are higher-
order terms, that is, are built using the abstraction and application operators and meta-variables
of arity at least one. In contrast, first-order terms have no abstractions, no applications, and
no meta-variables of non-zero arity. We will use small letters for them, as in 𝑙 → 𝑟.

The 𝛽-reduction rule is a particular case of higher order rule written (𝜆𝑥.𝑋 [𝑥] 𝑢) → 𝑋 [𝑢].

Definition 3 (Higher-order rewriting). Given an open term 𝑢, a position 𝑝 ∈ P𝑜𝑠(𝑢), and a

rule 𝑖 : 𝐿→ 𝑅, 𝑢 rewrites with 𝑖 at 𝑝, written 𝑢
𝑝

−→
𝑖
𝑣, iff 𝑢 |𝑝 = 𝐿𝛾 for some substitution 𝛾, and

𝑣 = 𝑢[𝑋 [𝑥]] 𝑝{𝑋 ↦→ 𝜆𝑥.𝑅𝛾} = 𝑢[𝑅𝛾] 𝑝, where 𝑥 is the list of variables of 𝑢 |𝑝 which are bound

above the position 𝑝 in 𝑢. We write 𝑢
𝑝

−→
R

𝑣 for ∃𝑖 ∈ R : 𝑢
𝑝

−→
𝑖
𝑣.

A 𝜆F -rewrite system is a pair (F ,R) made of a user’s signature F and a set R of higher-
order rewrite rules on F containing beta, defining the rewrite relation of 𝜆F as −→

R
.

𝜆F -rewrite systems are being used in a variety of proof assistants, notably in Agda, Is-
abelle, Dedukti, and Coq. As a higher-order rewriting format, 𝜆F is a Combinatory Re-
duction System [10]. This is not surprising since all other known higher-order rewriting formats
can be encoded as Combinatory Reduction Systems [11].

3 Typed rewriting structures

The role of typing is to characterize subsets of the set of higher-order closed terms that satisfy
good properties for computing. Calling generically TT such subsets of closed terms, its elements
are called typed closed terms. Computations are meant to operate on typed closed terms, but
rewriting is based on open terms, that is terms with meta-variables.

We denote therefore by TT𝜆F the set of typed open terms, assuming TT ⊆ TT𝜆F. In order
to dispense with explicit types, we say that a typed open substitution 𝜎 is well-typed for a
typed open term 𝑢 if 𝑢𝜎 is a typed open term, and write 𝜎 ∈ TT𝜆F (𝑢). More generally, 𝜎 is
well-typed for 𝜃 if 𝜎 is well-typed for all 𝑢 such that 𝑥 ↦→ 𝑢 ∈ 𝜃. Splitting allows then to define

3

Unification of Higher-Order Patterns Jean-Pierre Jouannaud, Université Paris-Saclay

whether the replacement of a subterm at a particular position by a typed term yields a typed
term: we define 𝑢 ∈ TT (𝑤[] 𝑝) iff 𝑤[𝑢] 𝑝 ∈ TT𝜆F, that is, iff {𝑍 ↦→ 𝜆𝑧.𝑢} ∈ TT𝜆F (𝑤[𝑍 [𝑧]] 𝑝).
We omit mention of ”open/closed” when it matters not or can be inferred from the context.

The axioms that a typed structure TT𝜆F such that X∪Z ⊆ TT𝜆F ⊆ T𝜆F should satisfy (and
that T𝜆F itself satisfies) are the following:

H0 TT𝜆F is closed under 𝛼-conversion, and renaming of a free occurrence of a given variable
(without capture) or meta-variable;

H1 abstraction: 𝑢 ∈ TT𝜆F iff 𝜆𝑧.𝑢 ∈ TT𝜆F;

H2 composition: 𝜎 ∈TT𝜆F (𝑢), 𝜏 ∈TT𝜆F (𝜎) and D𝑜𝑚(𝜏) ∩ (V𝑎𝑟 (𝑢) ∪MV𝑎𝑟 (𝑢))=∅ implies
𝜏 ∈TT𝜆F (𝑢𝜎);

H3 splitting: 𝑢𝜎 ∈ TT𝜆F implies 𝑢 ∈ TT𝜆F and 𝜎 ∈ TT𝜆F (𝑢);

H4 patterns: if 𝐿 is a pattern, then 𝐿 ∈ TT𝜆F.

Interpreting membership to TT𝜆F by Curry-style typability for some typing context, sets
of typed terms satisfy these assumptions for all usual type systems that have the unique type
property.

Typed structures enjoy a few more important closure properties, notably subterm, mono-
tonicity, stability, as well as unifiability:

Lemma 1 (Unifiability). Let 𝑢, 𝑣 be two terms unifiable by a substitution 𝜎 such that 𝑢𝜎 = 𝑣𝜎 is
well-typed, that is, 𝑢𝜎 ∈ TT𝜆F. Then, ∀𝑤[] such that (V𝑎𝑟 (𝑤[]) ∪MV𝑎𝑟 (𝑤[])) ∩D𝑜𝑚(𝜎) =
∅, 𝑢 ∈ TT𝜆F (𝑤[]) iff 𝑣 ∈ TT𝜆F (𝑤[]).

4 Unification in typed rewriting structures

We now investigate a major property of typed rewriting structures, the existence of most general
unifiers for solvable critical pair equations, that is, equations 𝑈 = 𝑉 such that one of 𝑈,𝑉 is a
left-hand side of rule, and the other a subterm of a left-hand side of rule. In other words, if
the equation 𝑈 = 𝑉 is unifiable in the untyped world, then it is unifiable in a typed structure.
Further, the most general unifier of the untyped structure happens to belong to any typed
structure, hence must be most general in any typed structure.

Definition 4. A unification (equational) problem is a conjunction of elementary equations. An
elementary equation is either the constant ⊥ or is of the form 𝑢 = 𝑣 in which 𝑢 is a pre-pattern
and 𝑣 is a pre-pattern.

A set of transformation rules for higher-order unification of untyped patterns is described
in [4] for linear patterns and meta-variables having a bounded arity, and its extension to non-
linear ones is also sketched, following the standard path by adding a Merge rule. These unifi-
cation rules are recalled in Figure 1. They are essentially those for simply typed patterns [9],
see also [6]. As usual, the rules transform elementary equations into a conjunction thereof until
some solved form is eventually obtained. They use the following definition:

Definition 5. A free variable 𝑥 ∈ X is protected in a pre-pattern 𝑢 if all its occurrences in 𝑢

belong to a pre-redex of 𝑢. We denote by UV𝑎𝑟 (𝑢) the set of unprotected variables of 𝑢.

4

Unification of Higher-Order Patterns Jean-Pierre Jouannaud, Université Paris-Saclay

Dec-Fun 𝑓 (𝑢) = 𝑓 (𝑣) −→ ∧𝑖= | 𝑓 |
𝑖=1 𝑢𝑖 = 𝑣𝑖 if 𝑓 ∈ F ∪Z∪{@}

Dec-Abs 𝜆𝑥.𝑢 = 𝜆𝑦.𝑣 −→ 𝑢{𝑥 ↦→ 𝑧} = 𝑣{𝑦 ↦→ 𝑧} with 𝑧 fresh

Merge 𝑋 [𝑥] = 𝑢 ∧ 𝑋 [𝑦] = 𝑣 −→ 𝑋 [𝑧] = 𝑢{𝑥 ↦→ 𝑧} ∧ 𝑢{𝑥 ↦→ 𝑧} = 𝑣{𝑦 ↦→ 𝑧} if |𝑢 | ≤ |𝑣 |
Swap 𝑢 = 𝑌 [𝑦] −→ 𝑌 [𝑦] = 𝑢 if 𝑢 is not a pre-redex

Flip 𝑋 [𝑥] = 𝑌 [𝑦] −→ 𝑌 [𝑦] = 𝑋 [𝑥] if |𝑋 | − |𝑥 | > |𝑌 | − |𝑦 |
Drop 𝑋 [𝑥] = 𝑢[𝑌 [𝑦]]𝑞 −→ 𝑋 [𝑥] = 𝑢[𝑍 [𝑧]]𝑞 ∧ 𝑌 [𝑦] = 𝑍 [𝑧]

where 𝑧 = 𝑦 ∩ (𝑥 ∪ BV𝑎𝑟 (𝑢)) and 𝑍 fresh s.t. |𝑍 | = |𝑌 | − |𝑦 | + |𝑧 |,
if 𝑦 ⊈ 𝑥 ∪ BV𝑎𝑟 (𝑢), |𝑋 | = |𝑥 | if 𝑢(Λ) ∈ F ∪ {@, 𝜆},UV𝑎𝑟 (𝑢) ⊆ 𝑥

and |𝑌 | − |𝑦 | ≥ |𝑋 | − |𝑥 | if 𝑞 = Λ,

where UV𝑎𝑟 (𝑢) denotes the set of variables of 𝑢 whose one occurrence
does not occur in an argument of a meta-variable.

Figure 1: Non-failure unification rules for equational problems

For an example, 𝑥 is protected in 𝑓 (𝑔(𝑋 [𝑥]), 𝑋), but not in 𝑓 (𝑔(𝑋 [𝑥]), 𝑥) because of its
second occurrence. Protected variables can be eliminated from a term by appropriately instan-
tiating its meta-variables as done in the Drop rule.

The first rule of Figure 1 is the same as that for first-order unification. Dec-Abs is the
particular case for abstractions. Merge eliminates all occurences of a non-linear meta-variable
but one. Swap, Flip and Drop put the equations in a format appropriate for extracting the
most general unifier.

The rules of Figure 1 suffice when a unification problem is known to be solvable, otherwise
failure rules are also needed to detect non-unifiability. These rules are recalled in Figure 2.
An important known observation exploited in rule Fail-Protect is that elementary unification
problems for which a free variable occurs unprotected on one side, and does not occur at all on
the other side, have no solution.

Theorem 1. Assume 𝜎 is a well-typed unifier for some critical pair equation 𝑈 = 𝑉 . Then,
𝑚𝑔𝑢(𝑈=𝑉) ∈ TT𝜆F (𝑈,𝑉). It is obtained by applying the rules of Figure 1 until no more possible.
Non-unifiability of an equational problem 𝑃0 is obtained when the whole set of rules fails, that
is, returns the constant ⊥.

Therefore, unifiability of typed patterns, and the expression of a most general unifier, does
not depend upon a particular Curry-style type system for the lambda calculus, provided that
the type system satisfies our axioms. This new result was already observed in particular cases.

Once soundeness of the rules is proved, the proof given in [5] is based on the preservation by
the unification rules of Figure 1 of an appropriate invariant expressing that some substitution
is a solution of the starting unification problem. In case no solution is known, the proof relies
on termination of the whole set of unification rules, which must therefore end up with an
application of global-Failure in case no solution exists to the starting unification problem.

Conflict 𝑓 (𝑢) = 𝑔(𝑣) −→ ⊥ if 𝑓 , 𝑔 ∈ F ∪X∪{@, 𝜆} and 𝑓 ≠ 𝑔

Fail-Protect 𝑋 [𝑥] = 𝑢 −→ ⊥ if ∃𝑧 ∈UV𝑎𝑟 (𝑢) \ 𝑥
Global-Failure 𝑃 ∧ ⊥ −→ ⊥

Figure 2: Failure unification rules

5

Unification of Higher-Order Patterns Jean-Pierre Jouannaud, Université Paris-Saclay

Let us illustrate some rules, using meta-variables according to our convention.

𝑓 (𝜆𝑧.𝑋 [𝑧]) = 𝑓 (𝜆𝑧.𝑧) −→
𝐷𝑒𝑐−𝐹𝑢𝑛

𝜆𝑧.𝑋 [𝑧] = 𝜆𝑧.𝑧 −→
𝐷𝑒𝑐−𝐴𝑏𝑠

𝑋 [𝑧] = 𝑧

𝑓 (𝜆𝑧.𝑋) = 𝑓 (𝜆𝑧.𝑧) −→
𝐷𝑒𝑐−𝐹𝑢𝑛

𝜆𝑧.𝑋 = 𝜆𝑧.𝑧 −→
𝐷𝑒𝑐−𝐴𝑏𝑠

𝑋 = 𝑧 −→
Fail-Protect

⊥

𝑓 (𝜆𝑦. 𝑓 (𝑈)) = 𝑓 (𝑋) −→
𝐷𝑒𝑐−𝐹𝑢𝑛

𝜆𝑦. 𝑓 (𝑈) = 𝑋 −→
Swap

𝑋 = 𝜆𝑦. 𝑓 (𝑈) −→
𝑀𝑒𝑡𝑎−𝐴𝑏𝑠

𝑋 [𝑦] = 𝑓 (𝑈)

𝑓 (𝑌) = 𝑓 (𝜆𝑦. 𝑓 (𝑈)) −→
𝐷𝑒𝑐−𝐹𝑢𝑛

𝑌 = 𝜆𝑦. 𝑓 (𝑈) −→
𝑀𝑒𝑡𝑎−𝐴𝑏𝑠

𝑌 [𝑦] = 𝑓 (𝑈) −→
Fail-Arity

⊥

𝑇 = 𝜆𝑦.𝑌 [𝑦] −→
𝑀𝑒𝑡𝑎−𝐴𝑏𝑠

𝑇 [𝑦] = 𝑌 [𝑦] −→
Flip

𝑌 [𝑦] = 𝑇 [𝑦]

𝑌 [𝑧] = 𝜆𝑥.𝑇 [𝑦, 𝑧] −→
𝑀𝑒𝑡𝑎−𝐴𝑏𝑠

𝑌 [𝑧, 𝑥] = 𝑇 [𝑦, 𝑧] −→
Drop

𝑌 [𝑧, 𝑥] = 𝑍 [𝑧] ∧ 𝑇 [𝑦, 𝑧] = 𝑍 [𝑧]
(where 𝑍 is a fresh variable of arity 1)

Since Associativity and Commutativity define a syntactic theory whose unification algorithm
can be expressed by rewrite rules [1], we conjecture that AC-unification of higher-order patterns
does not depend either upon a particular type system satisfying our axioms. Whether these
result also extend to type systems having a principal type instead of a unique type is also open.

References

[1] Alexandre Boudet and Evelyne Contejean. ”syntactic” ac-unification. In Jean-Pierre Jouannaud,
editor, Constraints in Computational Logics, First International Conference, CCL’94, Munich,
Germany, September 7-9, 1994, volume 845 of Lecture Notes in Computer Science, pages 136–151.
Springer, 1994.

[2] Gilles Dowek. Higher-order unification and matching. In John Alan Robinson and Andrei
Voronkov, editors, Handbook of Automated Reasoning (in 2 volumes), pages 1009–1062. Elsevier
and MIT Press, 2001.

[3] Gilles Dowek, Gaspard Férey, Jean-Pierre Jouannaud, and Jiaxiang Liu. Confluence of left-linear
higher-order rewrite theories by checking their nested critical pairs. Mathematical Structures in
Computer Science, Special issue on Confluence:1–36, 2022.

[4] Gaspard Férey and Jean-Pierre Jouannaud. Confluence in UnTyped Higher-Order Theories by
Means of Critical Pairs. draft hal-03126102, INRIA, march 2021.

[5] Jean-Pierre Jouannaud. Confluence in terminating rewriting computations. In Bertrand Meyer,
editor, The French School of Programming. Springer Verlag, 2024.

[6] Jean-Pierre Jouannaud and Claude Kirchner. Solving equations in abstract algebras: A rule-
based survey of unification. In Jean-Louis Lassez and Gordon Plotkin, editors, Computational
Logic: Essays in Honor of Alan Robinson. MIT-Press, 1991.

[7] Jan Willem Klop. Combinatory Reduction Systems. Number 127 in Mathematical Centre Tracts.
CWI, Amsterdam, The Netherlands, 1980. PhD Thesis.

[8] Richard Mayr and Tobias Nipkow. Higher-order rewrite systems and their confluence. Theoretical
Computer Science, 192:3–29, 1998.

[9] Dale Miller. A logic programming language with lambda-abstraction, function variables, and
simple unification. Journal of Logic and Computation, 1(4):497–536, 1991.

[10] Terese. Term rewriting systems. In Cambridge Tracts in Theoretical Computer Science, M. Bezem,
J. W. Klop, and R. de Vrijer editors. Cambridge University Press, 2003.

[11] Vincent van Oostrom and Femke van Raamsdonk. Comparing combinatory reduction systems and
higher-order rewrite systems. In Jan Heering, Karl Meinke, Bernhard Möller, and Tobias Nipkow,
editors, Higher-Order Algebra, Logic, and Term Rewriting, First International Workshop, HOA
’93, Amsterdam, The Netherlands, September 23-24, 1993, Selected Papers, volume 816 of Lecture
Notes in Computer Science, pages 276–304. Springer, 1993.

6

	Introduction
	Computations on higher-order terms
	Terms
	Substitutions
	Splitting and sticking
	Reductions
	Functional reductions
	Higher-order reductions

	Typed rewriting structures
	Unification in typed rewriting structures

