
Towards a Well-Founded ⪯ Relation for Permissive Nominal Terms

Alexander Baumgartner

Universidad de O’Higgins, Rancagua, Chile

Abstract

This work discusses the relation of more general terms (⪯) in the permissive nominal
language. First, we show that the permissive nominal language exhibits the same problem
as the classical nominal language, namely, that the relation ⪯ is not well-founded. Second,
we propose a modification in one of the original definitions that leads to a well-founded ⪯
relation. Third, we formulate an anti-unification algorithm that computes a unique least
general generalization of two arbitrary input terms. The proposed modification yields a
language that includes the original language from Dowek et al.. Since the original language
is of generalization type zero, computed generalizations might be outside of it.

1 Introduction

This work discusses the relation that states that one term is more general than another one (⪯),
and the problem of finding a generalization of two input terms (called anti-unification problem),
in the setting of permissive nominal terms [9]. Interesting generalizations are the least general
ones (lgg). They represent parts of the input terms that they have in common. Finding an
lgg has various real-world applications, e.g., in clone detection [5], analogy making [13], or
parallel recursion scheme detection [1]. To be able to find an lgg, the relation ⪯ needs to be
well-founded.

In the setting of nominal terms only atoms can be bounded. This yields some nice com-
putational properties [14, 20] that are missing in λ-calculus where arbitrary variables may be
bound [12, 15]. While the anti-unification problem has already been studied in various settings
with binders [3, 6, 7, 8, 10, 17], including classical nominal terms [2, 4, 19], to the best of our
knowledge, it has not yet been studied in the setting of permissive nominal terms.

It’s a known fact that in the case of classical nominal terms ⪯ is not well-founded [2]. I.e.,
without restriction the anti-unification problem is of type zero (no lgg exists). One possible
approach to overcome this issue is to introduce atom-variables [19]. Unfortunately, without any
restrictions, that approach leads to intractable algorithms due to its intrinsic complexity.

First, we show that, like in the classical setting, ⪯ is not well-founded in the permissive case
either. Second, we suggest a modification of the definition of permission sets which leads to
a well-founded ⪯ relation. Permission sets define the atoms that are allowed to appear freely
when instantiating a variable. The modification yields a term language that is a superset of the
original one introduced by Dowek et al.. Third, we formulate an anti-unification algorithm.

2 Preliminaries

This work focuses on permissive nominal terms, introduced in [9]. We assume that the reader
is familiar with them. In the following, main concepts and notions are being introduced.

Permissive Nominal Terms. Fix a countable infinite set of atoms A = {a, b, c, . . .}. Atoms
are identified by their name, i.e., different names imply different elements from A. In the
permissive nominal setting, A is partitioned into two countably infinite sets A< and A>. For



Towards a Well-Founded ⪯ Relation for Permissive Nominal Terms A. Baumgartner

instance, A< might be identified with even numbers while A> corresponds to the odd ones.
A signature Σ = {f, g, . . .} is a set of symbols of certain arity, such that Σ ∩ A = ∅. If
the arity of a symbol is clear from the context, we won’t mention it. A permutation π is
a bijection on A that is identity almost everywhere. Permutations are represented by finite
sequences of swappings.1 Swappings are written as (a b) where a, b ∈ A. Id denotes the identity
permutation. The composition of two permutations π and π′, denoted by π ◦ π′, is equivalent
to the concatenation of their representations as sequences of swappings.

The set P of all permission sets is defined as

P = {A ∪B | A ⊆ A<, B ⊂ A>, and B finite}.

In contrast to [9], our permission sets are not necessarily infinite. This decision is discussed in
section 3. S, T denote arbitrary permission sets. SinceB is restricted to be finite in the definition
of P, the subtraction of a (finite number of) permission set(s) from A yields a countably infinite
set. Therefore, permission sets are coinfinite w.r.t. A, i.e., from S ∈ P follows that A \ S is
an infinite set. Informally, this means that there are always “fresh” atoms available. It’s an
important property that guarantees that bound atoms can always be renamed.

For each permission set S, fix a countable infinite set of variables XS = {XS , Y S , ZS , . . .} of
sort S, disjoint from A and Σ. Moreover, XS and XT are disjoint for any permission set T ̸= S.

Example 1. X{a,b} is of finite sort {a, b}, while XA<∪{b} is of infinite sort A< ∪ {b}. X∅ is
of sort ∅. Sorts (i.e., permission sets) define the atoms that are allowed to appear freely in
instantiations (see Example 2).

Permissive nominal terms are built by the grammar:

t, ti ::= a | λa.t | π ·XS | f(t1, . . . , tn) π ::= Id | (a b) ◦ π

where a, b are atoms, f is a symbol of arbitrary but fixed arity n, λa.t denotes the abstraction
of atom a in the permissive nominal term t, π ·XS is a suspension of the permutation π on the
variable XS , and f(t1, . . . , tn) is a function application. In the following, the word term refers
to permissive nominal terms, if not specified otherwise.

Permutation application to a term is defined recursively and gets suspended in front of
variables, as usual. We overload the notation, writing, e.g., π · t where π is a permutation
and t a term. A permutation π may be applied to a permission set S by π · S = {π(a) |
a ∈ S}. The set of free atoms of some terms t1, . . . , tn, denoted by fa(t1, . . . , tn), is defined as
fa(t1, t2, . . . , tn) = fa(t1)∪fa(t2, . . . , tn), fa(a) = {a}, fa(λa.t) = fa(t)\{a}, fa(π ·XS) = π·S,
and fa(f(t1, . . . , tn)) = fa(t1, . . . , tn).

Two terms are α-equivalent if they are equal up to renaming of bound atoms (Figure 1).
The predicate =α is used to denote α-equivalence.

a =α a

∀a ∈ S : π(a) =α π′(a)

π ·XS =α π′ ·XS

s1 =α t1 · · · sn =α tn
f(s1, . . . sn) =α f(t1, . . . , tn)

s =α t

λa.s =α λa.t

s =α (a b) · t
λa.s =α λb.t a /∈ fa(t)

Figure 1: α-equivalence rules as defined in [9].

1Representations are not unique. In any case, an arbitrary representation can be chosen.

2



Towards a Well-Founded ⪯ Relation for Permissive Nominal Terms A. Baumgartner

More General Relation ⪯. A substitution σ is a function that maps variables to terms such
that for any arbitrary variable XS holds that fa(σ(XS)) ⊆ S. Substitutions are identity almost
everywhere. The identity substitution is denoted by id and arbitrary substitutions are denoted
by σ, ρ. The composition of two substitutions and the action of a substitution on a term are
defined as usual. We use the postfix notation like tσ, where t is a term and σ a substitution.
The application of a substitution to a term is called instantiation and yields another term.

Given two terms t and s. We say that t is more general than s, denoted as t ⪯ s, if there
exists a substitution σ such that tσ =α s. The relation t ≺ s denotes that t is strictly more
general than s, i.e., t ⪯ s but not s ⪯ t. The notions of less general and strictly less general are
defined analogously. Moreover, t ≃ s means that t and s are equi-general, i.e., t ⪯ s and s ⪯ t.
A term r is a generalization of t and s if r ⪯ t and r ⪯ s. It is a least general generalization
(lgg) of t and s if there is no generalization r′ of t and s such that r ≺ r′.

Example 2. {X∅ 7→ λa.f(a)} is a substitution, while {X∅ 7→ f(a)} is not. Therefore, X∅ ⪯
λa.f(a), while X∅ ̸⪯ f(a). The instantiation g(Y S){Y S 7→ f(a)} = g(f(a)) is valid if a ∈ S.

3 Generalization Type

To discuss the generalization type of permissive nominal terms and our motivation of deviating
from the original approach, we recall the original definition of permission sets [9]. Dowek et al.
permission sets are defined as

PD = {(A< \A) ∪B | A ⊂ A<, B ⊂ A>, and A,B are finite}.

Dowek et al. permission sets are infinite and coinfinite w.r.t. A. On the other hand, our
definition yields permission sets that are only coinfinite w.r.t. A, but not necessarily infinite.
Note that P also includes permission sets of the form (A< \ A) ∪ B, where A ⊂ A<, B ⊂ A>

and A,B are finite. Therefore, PD ⊂ P, i.e., our setting is more general.

Theorem 1. When using Dowek et al. permission sets, the relation ⪯ is not well-founded.

Proof. Since A< and A> are disjoint, any permission set from PD corresponds to a set of
the form S \ A where S consists of all atoms from A< and finitely many atoms from A>, and
A ⊂ A< is finite. By definition, any substitution σ must satisfy fa(σ(XS\A)) ⊆ S \A for any A.
It follows that XS\∅ ≺ XS\{a1} ≺ XS\{a1,a2} ≺ . . . . Since A is finite, ⪯ is not well-founded.

Corollary 1. Given two atoms a and b there is no lgg of a and b in the setting of PD.

This problem arises for any two arbitrary terms t and s that have a finite number of free
atoms, i.e., where fa(t, s) is a finite set. For instance, the terms f(a) and g(b) do not have an
lgg in the setting of Dowek et al.. Revising the proof of Theorem 1, it is easy to observe that
the problem arises from the infinite nature of the Dowek et al. permission sets.

Also note that the same problem arises in the classical nominal setting. Baumgartner et
al. [2] showed that, when considering an infinite supply of atoms, there are infinite chains of the
form ⟨∅, X⟩ ≺ ⟨{a1#X}, X⟩ ≺ ⟨{a1#X, a2#X}, X⟩ ≺ . . . . To overcome that issue, the supply
of atoms may be restricted to a finite set A so that the statement ⟨{a#X | a ∈ A}, X⟩ becomes
valid. For more details about the classical nominal setting we refer the reader to [2, 11, 18].

Our suggestion to allow finite sets in P was motivated by the goal of overcoming that issue.

Example 3. Considering finite permission sets, we get a variable X{a,b} as the lgg of two atoms
a and b. I.e., only the atoms a and b are allowed to appear freely in instantiations of X{a,b}.
Note that X{a,b} is also an lgg of the two terms f(a) and g(b).

3



Towards a Well-Founded ⪯ Relation for Permissive Nominal Terms A. Baumgartner

In our setting, there is still an infinite supply of atoms (e.g., to rename bound atoms), and,
any valid term in the setting of Dowek et al. is also valid in our setting. Moreover, we can
find an lgg of any two input terms without any restriction. Theorem 2 establishes that the
generalization type becomes unitary in this setting.

Theorem 2. Given two arbitrary terms there exists a unique lgg up to ≃.

The proof of Theorem 2 follows from section 4 and 5 where we construct an anti-unification
algorithm that yields a unique output term of two arbitrary input terms and prove its properties.

4 Anti-Unification Algorithm NAUP

Given two terms t and s, an anti-unification equation is a tripleXS : t ≜ s whereXS is a variable
of sort fa(t, s) that neither appears in t nor in s. XS is called the generalization variable.

The anti-unification algorithm for permissive nominal terms, called NAUP , is formulated in
terms of transformation rules that work on triples of the form E; Q; σ, where E and Q are
sets of anti-unification equations, and σ is a substitution. Such triples are called the states of
the algorithm. The transformation rules are given in Figure 2. A variable is called fresh if it
didn’t already appear in any of the former states of the transformation process. We use ·∪ to
denote the disjoint union.

Atm: Atom

{XS : a ≜ a} ·∪E; Q; σ =⇒ E; Q; σ{XS 7→ a}.

Dec: Decomposition

{XS : f(t1, . . . , tn) ≜ f(s1, . . . , sn)} ·∪E; Q; σ
=⇒ {Y S1

1 : t1 ≜ s1, . . . , Y
Sn
n : tn ≜ sn} ∪ E; Q; σ{XS 7→ f(Y S1

1 , . . . , Y Sn
n )},

where f is a symbol of arity n ≥ 0, and Y Si
i is a fresh variable of sort Si = fa(ti, si), for

all 1 ≤ i ≤ n.

Abs: Abstraction

{XS : λa.t ≜ λb.s} ·∪E; Q; σ =⇒ {Y T : (c a) · t ≜ (c b) · s}∪E; Q; σ{XS 7→ λc.Y T },
where c ∈ A \ S and Y T is a fresh variable of sort T = fa((c a) · t, (c b) · s).2

Sol: Solving

{XS : t ≜ s} ·∪E; Q; σ =⇒ E; Q ∪ {XS : t ≜ s}; σ,
if none of the previous rules is applicable.

Mer: Merging

E; {XS : t1 ≜ s1, Y
T : t2 ≜ s2} ·∪Q; σ =⇒ E; {XS : t1 ≜ s1} ∪Q; σρ,

where ρ is a substitution defined by {Y T 7→ π ·XS} and π is a permutation such that
π · t1 =α t2 and π · s1 =α s2.

3

Figure 2: Transformation rules of the anti-unification algorithm.

2Since A\S isn’t empty and fa(λa.t, λb.s) ⊆ S, we can take c ∈ A\S to rename the bound atoms (Figure 1).
3Since the sort of generalization variables is minimal w.r.t. the represented terms, ρ always exists if π exists.

4



Towards a Well-Founded ⪯ Relation for Permissive Nominal Terms A. Baumgartner

Computing The Lgg. Given two terms t and s, NAUP works in the following manner:

1. Create the initial state {Xfa(t,s) : t ≜ s}; ∅; id .

2. Apply the rules of Figure 2 exhaustively, that is {Xfa(t,s) : t ≜ s}; ∅; id =⇒∗ ∅; Q; σ.

3. Apply the computed substitution σ to the generalization variable of the initial state
Xfa(t,s), that is Xfa(t,s)σ, to obtain the generalization of the input terms t and s.

We write NAUP(t, s) to denote the result of that process, i.e., it denotes the generalization.
Since, from the computed substitution only one mapping is needed to obtain the general-

ization, we will omit all the other mappings in the following derivation examples.

Example 4. Consider the input terms f(a, b, a) and f(b, a, c). The initial state is {X{a,b,c} :
f(a, b, a) ≜ f(b, a, c)}; ∅; id . Now we apply the rules of Figure 2 exhaustively.

{X{a,b,c} : f(a, b, a) ≜ f(b, a, c)}; ∅; id =⇒Dec

{Y {a,b}
1 : a ≜ b, Y

{a,b}
2 : b ≜ a, Y

{a,c}
3 : a ≜ c}; ∅; {X{a,b,c} 7→ f(Y

{a,b}
1 , Y

{a,b}
2 , Y

{a,c}
3 )} =⇒3

Sol

∅; {Y {a,b}
1 : a ≜ b, Y

{a,b}
2 : b ≜ a, Y

{a,c}
3 : a ≜ c}; {X{a,b,c} 7→ f(Y

{a,b}
1 , Y

{a,b}
2 , Y

{a,c}
3 )} =⇒Mer

∅; {Y {a,b}
1 : a ≜ b, Y

{a,c}
3 : a ≜ c}; {X{a,b,c} 7→ f(Y

{a,b}
1 , (a b) · Y {a,b}

1 , Y
{a,c}
3 )}

The computed generalization is f(Y
{a,b}
1 , (a b) · Y {a,b}

1 , Y
{a,c}
3 ). Applying the substitution

{Y {a,b}
1 7→ a, Y

{a,c}
3 7→ a} gives f(a, b, a), and applying {Y {a,b}

1 7→ b, Y
{a,c}
3 7→ c} gives f(b, a, c).

Example 5. Consider the input terms f(λb.b, a) and f(λa.XS , XS) where S ⊆ A< and a ∈ S.
The initial state is {Y S : f(λb.b, a) ≜ f(λa.XS , XS)}; ∅; id .

{Y S : f(λb.b, a) ≜ f(λa.XS , XS)}; ∅; id =⇒Dec

{ZS\{a}
1 : λb.b ≜ λa.XS , ZS

2 : a ≜ XS}; ∅; {Y S 7→ f(Z
S\{a}
1 , ZS

2 )} =⇒Abs

{Z(S\{a})∪{c}
3 : c ≜ (a c) ·XS , ZS

2 : a ≜ XS}; ∅; {Y S 7→ f(λc.Z
(S\{a})∪{c}
3 , ZS

2 )} =⇒2
Sol

∅; {Z(S\{a})∪{c}
3 : c ≜ (a c) ·XS , ZS

2 : a ≜ XS}; {Y S 7→ f(λc.Z
(S\{a})∪{c}
3 , ZS

2 )} =⇒Mer

∅; {ZS
2 : a ≜ XS}; {Y S 7→ f(λc.(a c) · ZS

2 , Z
S
2 )}

The computed result is f(λc.(a c) · ZS
2 , Z

S
2 ). It is equi-general to f(λa.XS , XS), and, instanti-

ating it by {ZS
2 7→ a} results in f(λc.c, a) which is α-equivalent to f(λb.b, a).

Note that in the merge step of Example 5, we could have chosen to keep Z
(S\{a})∪{c}
3 instead

of ZS
2 . There might be various possible rule applications to a certain state but the choice doesn’t

matter. The derivations are confluent and lead to equi-general results.

5 Properties of NAUP

Lemma 1 (Termination). NAUP generates O(n) states for any input of size n and terminates.

Proof. The size ∥t∥ of a term t is defined as ∥a∥ = 1, ∥f(t1, . . . , tn)∥ = 1+
∑n

i=1 ∥ti∥, ∥λa.s∥ =
1 + ∥s∥, and ∥π · XS∥ = 1. The size of a set of anti-unification equations E is defined as
∥E∥ =

∑
XS :t≜s∈E ∥t∥+ ∥s∥. Finally, the size of a state E; Q; σ is defined by 2∥E∥+ ∥Q∥.

Using that definition, we get that the initial state created by NAUP(t, s) is of size
2(∥t∥ + ∥s∥), i.e., linear by the size of the input terms t and s. Since every rule applica-
tion strictly decreases the size of the state, NAUP generates at most O(n) states until no more
rule is applicable, for any input of size n.

5



Towards a Well-Founded ⪯ Relation for Permissive Nominal Terms A. Baumgartner

Lemma 2 (Soundness). Given terms t, s. Any term NAUP(t, s) is a generalization of t and s.

Proof. Given two input terms t and s, NAUP(t, s) creates an initial state E; Q; σ where E =
{Xfa(t,s) : t ≜ s}, Q = ∅, and σ = id . It trivially holds that Xfa(t,s)σ is a generalization
of t and s. By induction on the derivation process we will show that this is actually an
invariant that is maintained by rule applications. More precisely, we show that, after any rule
application E′; Q′; σ′ =⇒ E′′; Q′′; σ′′, the term Xfa(t,s)σ′′ is a generalization of t and s, given
that Xfa(t,s)σ′ is a generalization of t and s. In order to prove that, two substitutions, that can
be obtained from an arbitrary set of anti-unification equations F , are needed:

ρFl := {XS 7→ t | XS : t ≜ s ∈ F} ρFr := {XS 7→ s | XS : t ≜ s ∈ F}

For the initial state, it is trivial that Xfa(t,s)σρE∪Q
l =α t and Xfa(t,s)σρE∪Q

r =α s. By case

distinction on the rules of Figure 2 it can also easily be verified that Xfa(t,s)σ′′ρE
′′∪Q′′

l =α t and

Xfa(t,s)σ′′ρE
′′∪Q′′

r =α s holds, given that Xfa(t,s)σ′ρE
′∪Q′

l =α t and Xfa(t,s)σ′ρE
′∪Q′

r =α s.

Lemma 3 (Completeness). For any generalization r of some terms t, s holds r ⪯ NAUP(t, s).

Proof. By structural induction on r we identify common parts of t and s. 4 possible cases are
given by the term grammar. In the two cases where we encounter either an atom or a function
application in r, it is easy to conclude that one of the rules Atm or Dec is applicable. Therefore,
the same symbol will also appear in the substitution of the transformed state of NAUP .

The third case treats abstractions in r. I.e., sub-terms like λa.t′ and λb.s′ in t, s. It corre-
sponds to the case where Abs applies. Abs performs α-renaming and generalizes the abstraction.

The last case considers the appearance of a suspension π ·XS in r. It represents sub-terms
t′, s′ of t and s, respectively. NAUP keeps the sort of generalization variables minimal, always.
For t′, s′ it is fa(t′, s′). Therefore π ·XS is more general than the generalization variable used
by NAUP to represent t′ and s′. The rule Mer ensures that variables are shared, whenever
possible. It follows that NAUP(t, s) is an lgg of t and s.

6 Conclusion

The language of permissive nominal terms introduced by Dowek et al. exhibits the same
problem, w.r.t. the generalization type, as classical nominal terms. In order to address that
issue, we suggest a modification of the definition of permission sets. This leads to a term
language that is a superset of the one introduced by Dowek et al.

Our work might be seen as a starting point for a broader revision of the (permissive) nominal
setting. The modified definition probably leads to implications w.r.t. unification, computational
complexity, and so on. It might be practical to restrict the permission sets so that they have
a simple and finite representation. An interesting restriction could be to only consider finite
permission sets and the original ones from Dowek et al., i.e., sets of the form {a1, . . . , an} where
ai ∈ A and the ones in PD. Those are exactly the ones needed to get a well-founded ⪯ relation.
Note that NAUP computes generalizations within that restricted setting if the input terms
satisfy the restriction, e.g., if the input is from PD.

Due to the well-founded ⪯ relation, our setting might be closer to higher-order pattern [16]
(HOP) than other nominal settings [14]. Note that HOP have a well-founded ⪯ relation too [3].

Questions like, implications of our setting w.r.t. the results from [9], computational com-
plexity of NAUP , connections to other languages (e.g., HOP), etc. remain open. They are
possible directions of future work that continues to investigate on the proposed setting, with
and without imposing restrictions on the permission sets.

6



Towards a Well-Founded ⪯ Relation for Permissive Nominal Terms A. Baumgartner

References

[1] Adam D. Barwell, Christopher Brown, and Kevin Hammond. Finding parallel func-
tional pearls: Automatic parallel recursion scheme detection in Haskell functions via anti-
unification. Future Generation Comp. Syst., 79:669–686, 2018.

[2] Alexander Baumgartner, Temur Kutsia, Jordi Levy, and Mateu Villaret. Nominal anti-
unification. In Maribel Fernández, editor, 26th International Conference on Rewriting
Techniques and Applications, RTA 2015, June 29 to July 1, Warsaw, Poland, volume 36
of LIPIcs, pages 57–73. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

[3] Alexander Baumgartner, Temur Kutsia, Jordi Levy, and Mateu Villaret. Higher-order
pattern anti-unification in linear time. J. Autom. Reasoning, 58(2):293–310, 2017.

[4] Alexander Baumgartner and Daniele Nantes-Sobrinho. A, C, and AC nominal anti-
unification. In Temur Kutsia and Andrew M. Marshall, editors, Proceedings of the 34th
International Workshop on Unification, UNIF 2020, Linz, Austria, June 29, 2020, pages
5:1–5:6, 2020.

[5] Petr Bulychev and Marius Minea. An evaluation of duplicate code detection using anti-
unification. In Proc. 3rd International Workshop on Software Clones, 2009.

[6] David M. Cerna and Temur Kutsia. A generic framework for higher-order generalizations.
In Herman Geuvers, editor, 4th International Conference on Formal Structures for Com-
putation and Deduction, FSCD 2019, June 24-30, 2019, Dortmund, Germany, volume 131
of LIPIcs, pages 10:1–10:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[7] David M. Cerna and Temur Kutsia. Higher-order pattern generalization modulo equational
theories. Math. Struct. Comput. Sci., 30(6):627–663, 2020.

[8] David M. Cerna and Temur Kutsia. Anti-unification and generalization: A survey. In
Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence,
IJCAI 2023, 19th-25th August 2023, Macao, SAR, China, pages 6563–6573. ijcai.org, 2023.

[9] Gilles Dowek, Murdoch Gabbay, and Dominic Mulligan. Permissive nominal terms and
their unification: An infinite, co-infinite approach to nominal techniques. Logic Journal of
the IGPL, 18:769–822, 10 2010.

[10] Cao Feng and Stephen Muggleton. Towards inductive generalisation in higher order logic.
In Derek Sleeman and Peter Edwards, editors, Machine Learning Proceedings 1992, pages
154–162. Morgan Kaufmann, San Francisco (CA), 1992.

[11] Maribel Fernández and Murdoch Gabbay. Nominal rewriting. Inf. Comput., 205(6):917–
965, 2007.

[12] Warren D Goldfarb. The undecidability of the second-order unification problem. Theoret-
ical Computer Science, 13(2):225–230, 1981.

[13] Ulf Krumnack, Angela Schwering, Helmar Gust, and Kai-Uwe Kühnberger. Restricted
higher-order anti-unification for analogy making. In Mehmet A. Orgun and John Thornton,
editors, Australian Conference on Artificial Intelligence, volume 4830 of LNCS, pages 273–
282. Springer, 2007.

7



Towards a Well-Founded ⪯ Relation for Permissive Nominal Terms A. Baumgartner

[14] Jordi Levy and Mateu Villaret. Nominal unification from a higher-order perspective. In
Andrei Voronkov, editor, Rewriting Techniques and Applications, pages 246–260, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg.

[15] Claudio L Lucchesi. The undecidability of the unification problem for third order languages.
Report CSRR, 2059:129–198, 1972.

[16] Dale Miller. A logic programming language with lambda-abstraction, function variables,
and simple unification. J. Log. Comput., 1(4):497–536, 1991.

[17] Frank Pfenning. Unification and anti-unification in the calculus of constructions. In Pro-
ceedings of the Sixth Annual Symposium on Logic in Computer Science (LICS ’91), Ams-
terdam, The Netherlands, July 15-18, 1991, pages 74–85. IEEE Computer Society, 1991.

[18] Andrew M. Pitts. Nominal Sets: Names and Symmetry in Computer Science. Cambridge
University Press, 2013.

[19] Manfred Schmidt-Schauß and Daniele Nantes-Sobrinho. Nominal anti-unification with
atom-variables. In Amy P. Felty, editor, 7th International Conference on Formal Structures
for Computation and Deduction, FSCD 2022, August 2-5, 2022, Haifa, Israel, volume 228
of LIPIcs, pages 7:1–7:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[20] Christian Urban, Andrew M Pitts, and Murdoch J Gabbay. Nominal unification. Theo-
retical Computer Science, 323(1-3):473–497, 2004.

8


	1 Introduction
	2 Preliminaries
	3 Generalization Type
	4 Anti-Unification Algorithm NAUP
	5 Properties of NAUP
	6 Conclusion
	References

