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1 Introduction

We design rule-based satisfiability procedures modulo unions of axiomatized theories, target-
ing equational axioms such as Associativity or Commutativity. In the proposed approach, any
function symbol can be uninterpreted, associative only, commutative only, but also associative
and commutative. To tackle these unions of theories, we introduce a combined congruence clo-
sure procedure that can be viewed as a particular Nelson-Oppen combination method [8] using
particular congruence closure procedures for the individual theories. The combined congruence
procedure is based on the ping-ponging of entailed equalities between (shared) constants. Actu-
ally, the congruence closure procedures used for the individual theories allow us to deduce these
equalities. In this context, we consider terminating congruence closure procedures, but also
non-terminating ones. Hence, we have terminating congruence closure procedures for Commu-
tativity and Associativity-Commutativity, while the one for Associativity is non-terminating.
We show how all the congruence closure procedures, including the combined one, can be pre-
sented in a uniform and abstract way along the lines of [3, 5, 7].

Related Work. Congruence closure modulo Associativity-Commutativity has been success-
fully investigated in [3, 4]. It has been revisited more recently, showing how the method can
be extended to take into account additional orientable axioms, for instance to handle the the-
ory of Abelian Groups [5]. The case of flat permutation axioms, such as Commutativity, has
been considered in [7]. The theory of Groups and all of its subtheories including Associativity
is considered in [6], where the related congruence closure procedure is not necessarily termi-
nating, contrarily to the one known for Associativity-Commutativity. In these papers, some
particular unions of theories are studied, for instance to handle several symbols following the
same equational axioms.

In our paper, we clearly focus on the combination of congruence closure procedures to cope
with arbitrary unions of (signature-disjoint) theories. This combination of congruence closure
procedures can be seen as a particular case of combination of deduction-complete satisfiability
procedures, already investigated in [12]. In addition to Associativity-Commutativity, we be-
lieve that it is interesting to consider Associativity alone and Commutativity alone. On one
hand, Associativity provides a significant case study of a non-terminating congruence closure
procedure. On the other hand, Commutativity leads to a simple extension of the congruence
closure procedure known for the theory of equality as done in [7].

Paper Outline. In this paper, after explaining the notations used, we describe our combi-
nation method based on two kinds of processes: the orchestrator whose role is to prepare and
handle a combination of theories; a theory process whose role is to complete the set of rewrite
rules for a specific theory. Then we discuss the completeness of the method.
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2 Preliminaries

We assume the reader familiar with the notions of terms and term rewriting [1].
We consider n theories E1, . . . , En such that each theory Ei is given by a set of equalities

over the signature Σi. The theories E1, . . . , En are assumed to be pairwise signature-disjoint,
meaning that Σi ∩ Σj = ∅ for any i, j ∈ [1, n], i ̸= j. The union of theories E1 ∪ · · · ∪ En is
denoted by E and the union of signatures Σ1 ∪ · · · ∪ Σn is denoted by Σ. We assume a set of
ground equalities Γ and a set of ground disequalities ∆, where both Γ and ∆ are expressed over
the signature Σ.

The process described in this paper relies on a flattening of terms. For theory Ei including
an operator, say +, such that (x + y) + z ≈ x + (y + z) occurs in Ei, this flattening will be
performed using + as a variadic operator, eg. a+ (b+ c) is flattened into +(a, b, c).

The initial set of ground equalities Γ will be purified via flattening thanks to the introduction
of new constants (K denotes the set of used new constants taken from an infinite countable
set U disjoint from Σ), generating pure flat rewrite rules for each theory Ei (denoted by the
set Ri); and further deductions between those rules may generate flat equalities in this theory
(denoted by the set Ei).

The rewrite rules in Ri can have two shapes: D-rules denoted by f(c1, . . . , cn) → c, where
f ∈ Σi and c1, . . . , cn, c ∈ K; E-rules denoted by f(c1, . . . , cm) → f(d1, . . . , dn), where f ∈ Σi

is a variadic operator and c1, . . . , cm, d1, . . . , dn ∈ K. For any rewrite rule t → s, t has to
be greater than s (t ≻ s); the definition of an ordering may be difficult for deduction systems
modulo equational theories; but in our case the ordering is very simple as we only have to
consider D-rules and E-rules: for D-rules, it suffices to assume ∀f ∈ Σ,∀c ∈ K, f ≻ c; for
E-rules, we have to compare lists of constants: if of the same length, this can be done with
a lexicographic or a multiset extension of an arbitrary ordering comparing two constants of
K (the choice is done for each theory), and if of different length, the longest is the biggest.
For example, for an associative theory the lexicographic extension will be used, and for an
associative-commutative theory the multiset extension will be used.

The equalities in Ei also have two shapes: D-equalities denoted by f(c1, . . . , cn) ≈ c, where
f ∈ Σi and c1, . . . , cn, c ∈ K; E-equalities denoted by f(c1, . . . , cm) ≈ f(d1, . . . , dn), where
f ∈ Σi is a variadic operator and c1, . . . , cm, d1, . . . , dn ∈ K. An equality c1 ≈ c2 between
two constants of K is called a C-equality. E-rules and E-equalities will be generated only for
variadic operators by the Superposition inference rule, because of the use of extended rewrite
rules (see Section 3.2).

3 Combined Satisfiability Procedure

We describe in this section a procedure that aims at (semi-)deciding the satisfiability of any set
of ground equalities Γ together with any set of ground disequalities ∆, modulo a combination
of signature-disjoint equational theories Ei. This procedure, called CombCC, is based on congru-
ence closure and involves two kinds of processes: an orchestrator decomposing the problem to
separate the different theories, and theory processes that complete rewrite rules, one process
for each theory.

3.1 The Orchestrator

The role of the orchestrator is to purify and flatten the problem to be solved, to send each
theory process the rewrite rules it has to handle, and to detect if any contradiction wrt. ∆ is
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generated by one of the theory processes. For this purpose, several sets are handled in addition
to Γ and ∆: the set of new constants K, and for each equational theory Ei a set of rewrite rules
Ri and a set of equalities Ei. In the following inference rules, we will only indicate the involved
sets.

The input problem is given by two sets: a set of ground equalities Γ built over Σ plus a set
of ground disequalities ∆ built over Σ.

The first task of the orchestrator is to transform the disequalities for hiding the theories
involved. This is done with the following inference rule that replaces an arbitrary disequality by
a disequality between two new constants together with the equalities associating each of these
constants to the corresponding term:

Splitting:
K,∆ ∪ {t1 ̸≈ t2},Γ

K ∪ {c1, c2},∆ ∪ {c1 ̸≈ c2},Γ ∪ {t1 ≈ c1, t2 ≈ c2}

if t1, t2 ̸∈ K, c1, c2 ∈ U \K

Once all disequalities have been decomposed, the second task of the orchestrator is to purify
the equalities of Γ, by generating rewrite rules that are purely in one theory. In this purpose,
it applies the following inference rules:

Flattening:
K,Γ[t], Ri

K ∪ {c},Γ[c], Ri ∪ {t → c}

if t → c is a D-rule, c ∈ U \K, t occurs in some equality in Γ that is not a D-equality,
and t is Σi-rooted.

Orientation:
K ∪ {c},Γ ∪ {t ≈ c}, Ri

K ∪ {c},Γ, Ri ∪ {t → c}
if t ≈ c is a D-equality and t is Σi-
rooted.

When all equations have been transformed (Γ = ∅), the orchestrator runs one process per
equational theory Ei, providing it two sets of information: the set of new constants K and the
set of D-rules Ri defined over Σi and K.

Its final task is to manage equalities between new constants, when generated by a theory
process in some set Ei; there are two possibilities: if the equality contradicts a disequality of ∆
then the system can stop, otherwise a constant has to be replaced by the other in all sets.

Contradiction:
K ∪ {c, d},∆ ∪ {c ̸≈ d}, RE ∪ (Ri, Ei ∪ {c ≈ d})

⊥

Compression:
K ∪ {c, d},∆, RE ∪ (Ri, Ei ∪ {c ≈ d})

K ∪ {d},∆⟨c 7→ d⟩, RE⟨c 7→ d⟩ ∪ (Ri⟨c 7→ d⟩, Ei⟨c 7→ d⟩)

if c ≻ d; the notation ⟨c 7→ d⟩ denotes the homomorphic extension of the mapping
σ defined as σ(c) = d and σ(x) = x for x ̸= c, and S⟨c 7→ d⟩ denotes the set of
equalities/rules obtained by applying the mapping ⟨c 7→ d⟩ to each term in set S.

The strategy of the orchestrator can therefore be described by: Split∗ · (Flat∗ · Ori)∗ ·
(Cont ∪Comp)∗.

3.2 A Theory Process

A process run for an equational theory Ei will use inference rules to complete its term rewriting
system Ri. Some inference rules are used for transforming the rewrite rules (Composition), for
deducing new equalities added to a set Ei (Collapse, Superposition), and for handling those
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new equalities (Simplification, Orientation, Deletion). The set of new constants K is never
modified, so not indicated, but it is useful in the process for checking if a constant is a new one
or belongs to the theory.

Considering the theory Ei, if two terms t1 and t2 are Ei-equal in this theory, we write t1 ↔∗
Ei

t2. By (Ri, Ei) we denote the rewriting system defined by {u′ → v | u → v ∈ Ri and u′ ↔∗
Ei

u}.
For some theories, the inference system has to consider extended rewrite rules as we do not
explicitly use the axioms of a theory: an extension is built wrt. a context defined from the
theory axioms; a context is a term in which a non variable position (denoted by ·) is reserved
for placing the term to extend; let us denote ContEi

the set of contexts for the theory Ei; given
a D-rule or a E-rule u → v, its extended version by a context Cont[·] ∈ ContEi

is written
Cont[u] → Cont[v]. The construction of contexts for generating extensions has been explained
in [10, 9, 13].

In this paper, as we want to handle only shallow rewrite rules, we will consider only theories
for which extended rewrite rules have a shallow form. For example, if an operator f is asso-
ciative, from the axiom of this theory f(f(x, y), z) ≈ f(x, f(y, z)), we can build three shallow
contexts: f(·, x), f(x, ·) and f(x1, ·, x2). So, a rewrite rule f(a, b) → c has three extensions:
f(a, b, x) → f(c, x), f(x, a, b) → f(x, c) and f(x1, a, b, x2) → f(x1, c, x2).

By (Re
i , Ei) we denote the rewriting system extending (Ri, Ei) with all possible extended

rewrite rules from Ri.

The inference rules used by a theory process are the following.

Simplification:
Ri, Ei[t]

Ri, Ei[s]

where t occurs in some equality of Ei,
and t →(Re

i ,Ei) s.

Orientation:
Ri, Ei ∪ {t ≈ s}
Ri ∪ {t → s}, Ei

if t ≻ s and t → s is a D-rule or a
E-rule.

Deletion:
Ri, Ei ∪ {t ≈ s}

Ri, Ei

if t ↔∗
Ei

s.

Composition:
Ri ∪ {t → s, u → v}, Ei

Ri ∪ {t → s′, u → v}, Ei

if s →({u→v}e,Ei) s
′.

Collapse:
Ri ∪ {t → s, u → v}, Ei

Ri ∪ {u → v}, Ei ∪ {t′ ≈ s}
if t →({u→v}e,Ei) t

′,
and if t ↔∗

Ei
u then s ≻ v.

Superposition:
Ri ∪ {t1 → s1, t2 → s2}, Ei

Ri ∪ {t1 → s1, t2 → s2}, Ei ∪ {Cont1[s1]σ ≈ Cont2[s2]σ}

if the substitution σ is the ground substitution in a minimal complete set of Ei-
unifiers of Cont1[t1] and Cont2[t2], where Cont1[·], Cont2[·] ∈ ContEi

are selected
to guarantee a useful ground new equality; the resulting equality will be written in
flat form.

A strategy for combining all those inference rules is: (Com∗·(Col∪Sup)·Sim∗·(Del∪Ori))∗

So this process starts with a set of rewrite rules Ri and, if terminating, it ends with R∞
i where

there is no possible inference rule involving rewrite rules of R∞
i ; intermediate equalities are

stored in Ei. If an equality between two constants of K is generated, it will be handled by the
orchestrator.

For applying inference rules, this theory process has to use a Ei-matching algorithm for
applying rewriting steps with respect to (Re

i , Ei). It also needs a simple Ei-unification algorithm,
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simple because it will have to solve unification problems of the shape Cont1[t1] =
? Cont2[t2],

where t1 and t2 are ground; if there is a solution, it will be the unique most general unifier since
the variables occurring in Conti[·] will be instantiated by subterms of the ground term t3−i.

4 Completeness Results

The combined satisfiability procedure described in the previous section is defined for “some
theories Ei”. But for guaranteeing its completeness, we consider only three kinds of theories (in
addition to the empty theory of course).

• Commutative theories are represented by the set of axioms
{f(x1, . . . , xk) ≈ f(xσ(1), . . . , xσ(k)) | σ is a permutation of {1, . . . , k}}

With such theories, there is no extension of rewrite rules to be considered, so the Super-
position inference rule cannot apply. For the ordering, the arguments of a commutative
operator are compared with a multiset extension of the ordering between constants of K.

• Associative theories are represented by axioms f(f(x1, x2), x3) ≈ f(x1, f(x2, x3)). They
generate three possible extensions of rewrite rules, with the contexts f(·, x), f(x, ·) and
f(x1, ·, x2). Those three contexts can be used for applying term rewriting steps with
respect to (Re

i , Ei). But for the Superposition inference rule between two rules t1 →
s1 and t2 → s2, we only need to consider their extensions f(t1, x1) → f(s1, x1) and
f(x2, t2) → f(x2, s2) because this is the only combination of contexts for which the
unification problem (f(t1, x1) =? f(x2, t2)) can generate a ground most general unifier
(any use of another context would generate a redundant equation). For the ordering, the
arguments of an associative operator are compared with a lexicographic extension of the
ordering between constants of K.

• Associative-Commutative theories are represented by axioms f(x1, x2) ≈ f(x2, x1) and
f(f(x1, x2), x3) ≈ f(x1, f(x2, x3)). They generate only one possible extension of rewrite
rules, with the context f(·, x), used for applying term rewriting steps by (Re

i , Ei), and
the Superposition inference rule. For the ordering, the arguments of an AC operator are
compared with a multiset extension of the ordering between constants of K.

The CombCC procedure is refutationally complete, provided that deductions are fairly applied.
Moreover, if the CombCC procedure terminates without finding a contradiction with disequalities
of ∆, it generates a terminating confluent term rewriting system for the equational theory E∪Γ.

Theorem 1. Let E be any disjoint union of empty, commutative, associative, and associative-
commutative theories over the combined signature Σ which is assumed to include uninterpreted
function symbols and constants. Consider Γ is any set of ground Σ-equalities and ∆ is any set
of ground Σ-disequalities. Given the input Γ ∪ ∆, the CombCC procedure halts on ⊥ if Γ ∪ ∆
is E-unsatisfiable. If the CombCC procedure halts on an output distinct from ⊥, then Γ ∪ ∆ is
E-satisfiable, and the output provides a rewriting system R such that (1) R is terminating and
confluent modulo E on T (Σ ∪ K), and (2) any two ground terms in T (Σ) are E ∪ R-equal iff
they are E ∪ Γ-equal. Moreover, the CombCC procedure is necessarily terminating if E does not
involve associative theories.

Example 1. Our procedure may indeed not terminate (if no contradiction exists) with associa-
tive theories. For example, if f and g are associative, given the equalities {f(a, b) ≈ c, f(a, c) ≈
f(c, a), g(b, a) ≈ c, g(a, c) ≈ g(c, a)}, either the theory process of f , or the one of g, will generate
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an infinite number of rewrite rules, depending on the chosen ordering between constants a and
c deciding of the orientation of the second and fourth equalities. If c ≻ a, the infinitely gen-
erated rules can be schematized by f(a, cn, b) → f(c, cn). If a ≻ c, they can be schematized by
g(b, cn, a) → f(c, cn). We also have non-terminating examples with a single associative theory,
but they may be less simple to explain.

To prove the completeness of CombCC, we can rely on a Nelson-Oppen combination method [8]
based on the ping-ponging of entailed equalities between (shared) constants. This combination
method is applicable without loss of completeness because one can rely on a union of convex and
stably infinite theories, using the same proof idea as the one initiated in [2]. The theories we
focus on are convex, since equational theories are Horn theories, and Horn theories are known
to be convex [11]. Actually, the convexity induces a particular way to decide the satisfiability of
equalities plus a conjunction of disequalities: it allows us to consider each disequality separately.
Assuming convexity, a satisfiable set of equalities Γ together with a set of disequalities ∆ is
satisfiable if and only if for any s ̸≈ t ∈ ∆, we have that s ≈ t is not entailed by Γ. In
our context, arbitrary satisfiability problems are equi-satisfiable, via flattening, to satisfiability
problems including only flat literals, meaning that all the disequalities in ∆ are of the form c ̸≈ d
where c and d are constants. Thus, we are looking for inference systems with the property of
being deduction-complete [12], in order to derive each equality c ≈ d such that Γ ⇒ c ≈ d is
valid in the underlying theory. This is exactly the purpose of a congruence closure procedure
when it applies to an input set of flat equalities Γ. It generates all the equalities between
constants that are logically entailed by Γ.

In this paper, we consider terminating congruence closure procedures, but also non-termina-
ting ones. Compared to a classical use of the Nelson-Oppen combination method, we have to
accommodate procedures that are not necessarily terminating, as exemplified by Associativity.

Let us shortly explain why CombCC is refutationally complete. According to the complete-
ness of the Nelson-Oppen method, the satisfiability problem in any disjoint union of stably
infinite theories is reducible to the satisfiability problems in the component theories, provided
that all possible arrangements are guessed. Consequently, given any disjoint union of stably
infinite theories, using refutationally complete procedures for the satisfiability problems in the
component theories allows us to get a refutationally complete procedure for the satisfiability
problem in the union. In our context, stably infinite theories are also convex and so the guessing
of all possible arrangements can be replaced by a ping-ponging of entailed equalities between
constants. Then, we use the property that all the entailed equalities between constants are
eventually generated since our congruence closure procedures are deduction-complete.

5 Conclusion

We have implemented the combination of those three kinds of theories (plus the empty theory)
by extending AbstractCC [3]. The result is a very efficient procedure, even if the initial set of
ground (dis)equalities contains very big terms.

We have defined the orchestrator so that it does not need to handle specific algorithms
of theories Ei. It could be more efficient using other inference rules like Simplification and
Deletion. But we did this on purpose for the clarity of the paper. We are considering several
extensions of our procedure, to apply it to any theory having a deduction system preserving the
groundness of generated rules/equalities. This applies to flat permutative theories, an extension
of commutative theories. It also applies to extensions of associative or associative-commutative
theories where axioms can be used as shallow collapsing rewrite rules.
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